Metamath Proof Explorer


Theorem hashbnd

Description: If A has size bounded by an integer B , then A is finite. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Assertion hashbnd AVB0ABAFin

Proof

Step Hyp Ref Expression
1 nn0re B0B
2 ltpnf BB<+∞
3 rexr BB*
4 pnfxr +∞*
5 xrltnle B*+∞*B<+∞¬+∞B
6 3 4 5 sylancl BB<+∞¬+∞B
7 2 6 mpbid B¬+∞B
8 1 7 syl B0¬+∞B
9 hashinf AV¬AFinA=+∞
10 9 breq1d AV¬AFinAB+∞B
11 10 notbid AV¬AFin¬AB¬+∞B
12 8 11 syl5ibrcom B0AV¬AFin¬AB
13 12 expdimp B0AV¬AFin¬AB
14 13 ancoms AVB0¬AFin¬AB
15 14 con4d AVB0ABAFin
16 15 3impia AVB0ABAFin