Metamath Proof Explorer


Theorem fta

Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion fta FPolySdegFzFz=0

Proof

Step Hyp Ref Expression
1 eqid coeffF=coeffF
2 eqid degF=degF
3 simpl FPolySdegFFPolyS
4 simpr FPolySdegFdegF
5 eqid ifif1ss1F0coeffFdegF2F0coeffFdegF2if1ss1=ifif1ss1F0coeffFdegF2F0coeffFdegF2if1ss1
6 eqid F0coeffFdegF2=F0coeffFdegF2
7 1 2 3 4 5 6 ftalem2 FPolySdegFr+yr<yF0<Fy
8 simpll FPolySdegFr+yr<yF0<FyFPolyS
9 simplr FPolySdegFr+yr<yF0<FydegF
10 eqid s|sr=s|sr
11 eqid TopOpenfld=TopOpenfld
12 simprl FPolySdegFr+yr<yF0<Fyr+
13 simprr FPolySdegFr+yr<yF0<Fyyr<yF0<Fy
14 fveq2 y=xy=x
15 14 breq2d y=xr<yr<x
16 2fveq3 y=xFy=Fx
17 16 breq2d y=xF0<FyF0<Fx
18 15 17 imbi12d y=xr<yF0<Fyr<xF0<Fx
19 18 cbvralvw yr<yF0<Fyxr<xF0<Fx
20 13 19 sylib FPolySdegFr+yr<yF0<Fyxr<xF0<Fx
21 1 2 8 9 10 11 12 20 ftalem3 FPolySdegFr+yr<yF0<FyzxFzFx
22 7 21 rexlimddv FPolySdegFzxFzFx
23 simpll FPolySdegFzFz0FPolyS
24 simplr FPolySdegFzFz0degF
25 simprl FPolySdegFzFz0z
26 simprr FPolySdegFzFz0Fz0
27 1 2 23 24 25 26 ftalem7 FPolySdegFzFz0¬xFzFx
28 27 expr FPolySdegFzFz0¬xFzFx
29 28 necon4ad FPolySdegFzxFzFxFz=0
30 29 reximdva FPolySdegFzxFzFxzFz=0
31 22 30 mpd FPolySdegFzFz=0