Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | fta | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | simpl | |
|
4 | simpr | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 1 2 3 4 5 6 | ftalem2 | |
8 | simpll | |
|
9 | simplr | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | simprl | |
|
13 | simprr | |
|
14 | fveq2 | |
|
15 | 14 | breq2d | |
16 | 2fveq3 | |
|
17 | 16 | breq2d | |
18 | 15 17 | imbi12d | |
19 | 18 | cbvralvw | |
20 | 13 19 | sylib | |
21 | 1 2 8 9 10 11 12 20 | ftalem3 | |
22 | 7 21 | rexlimddv | |
23 | simpll | |
|
24 | simplr | |
|
25 | simprl | |
|
26 | simprr | |
|
27 | 1 2 23 24 25 26 | ftalem7 | |
28 | 27 | expr | |
29 | 28 | necon4ad | |
30 | 29 | reximdva | |
31 | 22 30 | mpd | |