Description: Lemma for fta . There exists a global minimum of the function abs o. F . The proof uses a circle of radius r where r is the value coming from ftalem1 ; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ftalem.1 | |
|
ftalem.2 | |
||
ftalem.3 | |
||
ftalem.4 | |
||
ftalem3.5 | |
||
ftalem3.6 | |
||
ftalem3.7 | |
||
ftalem3.8 | |
||
Assertion | ftalem3 | |