Metamath Proof Explorer


Theorem ftalem3

Description: Lemma for fta . There exists a global minimum of the function abs o. F . The proof uses a circle of radius r where r is the value coming from ftalem1 ; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses ftalem.1 A=coeffF
ftalem.2 N=degF
ftalem.3 φFPolyS
ftalem.4 φN
ftalem3.5 D=y|yR
ftalem3.6 J=TopOpenfld
ftalem3.7 φR+
ftalem3.8 φxR<xF0<Fx
Assertion ftalem3 φzxFzFx

Proof

Step Hyp Ref Expression
1 ftalem.1 A=coeffF
2 ftalem.2 N=degF
3 ftalem.3 φFPolyS
4 ftalem.4 φN
5 ftalem3.5 D=y|yR
6 ftalem3.6 J=TopOpenfld
7 ftalem3.7 φR+
8 ftalem3.8 φxR<xF0<Fx
9 5 ssrab3 D
10 6 cnfldtopon JTopOn
11 resttopon JTopOnDJ𝑡DTopOnD
12 10 9 11 mp2an J𝑡DTopOnD
13 12 toponunii D=J𝑡D
14 eqid topGenran.=topGenran.
15 cnxmet abs∞Met
16 15 a1i φabs∞Met
17 0cn 0
18 17 a1i φ0
19 7 rpxrd φR*
20 6 cnfldtopn J=MetOpenabs
21 eqid abs=abs
22 21 cnmetdval 0y0absy=0y
23 17 22 mpan y0absy=0y
24 df-neg y=0y
25 24 fveq2i y=0y
26 absneg yy=y
27 25 26 eqtr3id y0y=y
28 23 27 eqtrd y0absy=y
29 28 breq1d y0absyRyR
30 29 rabbiia y|0absyR=y|yR
31 5 30 eqtr4i D=y|0absyR
32 20 31 blcld abs∞Met0R*DClsdJ
33 16 18 19 32 syl3anc φDClsdJ
34 7 rpred φR
35 fveq2 y=xy=x
36 35 breq1d y=xyRxR
37 36 5 elrab2 xDxxR
38 37 simprbi xDxR
39 38 rgen xDxR
40 brralrspcev RxDxRsxDxs
41 34 39 40 sylancl φsxDxs
42 eqid J𝑡D=J𝑡D
43 6 42 cnheibor DJ𝑡DCompDClsdJsxDxs
44 9 43 ax-mp J𝑡DCompDClsdJsxDxs
45 33 41 44 sylanbrc φJ𝑡DComp
46 plycn FPolySF:cn
47 3 46 syl φF:cn
48 abscncf abs:cn
49 48 a1i φabs:cn
50 47 49 cncfco φabsF:cn
51 ssid
52 ax-resscn
53 10 toponrestid J=J𝑡
54 6 tgioo2 topGenran.=J𝑡
55 6 53 54 cncfcn cn=JCntopGenran.
56 51 52 55 mp2an cn=JCntopGenran.
57 50 56 eleqtrdi φabsFJCntopGenran.
58 10 toponunii =J
59 58 cnrest absFJCntopGenran.DabsFDJ𝑡DCntopGenran.
60 57 9 59 sylancl φabsFDJ𝑡DCntopGenran.
61 7 rpge0d φ0R
62 fveq2 y=0y=0
63 abs0 0=0
64 62 63 eqtrdi y=0y=0
65 64 breq1d y=0yR0R
66 65 5 elrab2 0D00R
67 18 61 66 sylanbrc φ0D
68 67 ne0d φD
69 13 14 45 60 68 evth2 φzDxDabsFDzabsFDx
70 fvres zDabsFDz=absFz
71 70 ad2antlr φzDxDabsFDz=absFz
72 plyf FPolySF:
73 3 72 syl φF:
74 73 ad2antrr φzDxDF:
75 simplr φzDxDzD
76 9 75 sselid φzDxDz
77 fvco3 F:zabsFz=Fz
78 74 76 77 syl2anc φzDxDabsFz=Fz
79 71 78 eqtrd φzDxDabsFDz=Fz
80 fvres xDabsFDx=absFx
81 80 adantl φzDxDabsFDx=absFx
82 simpr φzDxDxD
83 9 82 sselid φzDxDx
84 fvco3 F:xabsFx=Fx
85 74 83 84 syl2anc φzDxDabsFx=Fx
86 81 85 eqtrd φzDxDabsFDx=Fx
87 79 86 breq12d φzDxDabsFDzabsFDxFzFx
88 87 ralbidva φzDxDabsFDzabsFDxxDFzFx
89 88 rexbidva φzDxDabsFDzabsFDxzDxDFzFx
90 69 89 mpbid φzDxDFzFx
91 ssrexv DzDxDFzFxzxDFzFx
92 9 90 91 mpsyl φzxDFzFx
93 67 adantr φz0D
94 2fveq3 x=0Fx=F0
95 94 breq2d x=0FzFxFzF0
96 95 rspcv 0DxDFzFxFzF0
97 93 96 syl φzxDFzFxFzF0
98 73 ad2antrr φzxDF:
99 ffvelcdm F:0F0
100 98 17 99 sylancl φzxDF0
101 100 abscld φzxDF0
102 simpr φzxDxD
103 102 eldifad φzxDx
104 98 103 ffvelcdmd φzxDFx
105 104 abscld φzxDFx
106 8 ad2antrr φzxDxR<xF0<Fx
107 102 eldifbd φzxD¬xD
108 37 baib xxDxR
109 103 108 syl φzxDxDxR
110 107 109 mtbid φzxD¬xR
111 34 ad2antrr φzxDR
112 103 abscld φzxDx
113 111 112 ltnled φzxDR<x¬xR
114 110 113 mpbird φzxDR<x
115 rsp xR<xF0<FxxR<xF0<Fx
116 106 103 114 115 syl3c φzxDF0<Fx
117 101 105 116 ltled φzxDF0Fx
118 simplr φzxDz
119 98 118 ffvelcdmd φzxDFz
120 119 abscld φzxDFz
121 letr FzF0FxFzF0F0FxFzFx
122 120 101 105 121 syl3anc φzxDFzF0F0FxFzFx
123 117 122 mpan2d φzxDFzF0FzFx
124 123 ralrimdva φzFzF0xDFzFx
125 97 124 syld φzxDFzFxxDFzFx
126 125 ancld φzxDFzFxxDFzFxxDFzFx
127 ralunb xDDFzFxxDFzFxxDFzFx
128 undif2 DD=D
129 ssequn1 DD=
130 9 129 mpbi D=
131 128 130 eqtri DD=
132 131 raleqi xDDFzFxxFzFx
133 127 132 bitr3i xDFzFxxDFzFxxFzFx
134 126 133 imbitrdi φzxDFzFxxFzFx
135 134 reximdva φzxDFzFxzxFzFx
136 92 135 mpd φzxFzFx