| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftalem.1 | ⊢ 𝐴  =  ( coeff ‘ 𝐹 ) | 
						
							| 2 |  | ftalem.2 | ⊢ 𝑁  =  ( deg ‘ 𝐹 ) | 
						
							| 3 |  | ftalem.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 4 |  | ftalem.4 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 5 |  | ftalem3.5 | ⊢ 𝐷  =  { 𝑦  ∈  ℂ  ∣  ( abs ‘ 𝑦 )  ≤  𝑅 } | 
						
							| 6 |  | ftalem3.6 | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 7 |  | ftalem3.7 | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 8 |  | ftalem3.8 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℂ ( 𝑅  <  ( abs ‘ 𝑥 )  →  ( abs ‘ ( 𝐹 ‘ 0 ) )  <  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 9 | 5 | ssrab3 | ⊢ 𝐷  ⊆  ℂ | 
						
							| 10 | 6 | cnfldtopon | ⊢ 𝐽  ∈  ( TopOn ‘ ℂ ) | 
						
							| 11 |  | resttopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ℂ )  ∧  𝐷  ⊆  ℂ )  →  ( 𝐽  ↾t  𝐷 )  ∈  ( TopOn ‘ 𝐷 ) ) | 
						
							| 12 | 10 9 11 | mp2an | ⊢ ( 𝐽  ↾t  𝐷 )  ∈  ( TopOn ‘ 𝐷 ) | 
						
							| 13 | 12 | toponunii | ⊢ 𝐷  =  ∪  ( 𝐽  ↾t  𝐷 ) | 
						
							| 14 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 15 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) ) | 
						
							| 17 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 19 | 7 | rpxrd | ⊢ ( 𝜑  →  𝑅  ∈  ℝ* ) | 
						
							| 20 | 6 | cnfldtopn | ⊢ 𝐽  =  ( MetOpen ‘ ( abs  ∘   −  ) ) | 
						
							| 21 |  | eqid | ⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  ) | 
						
							| 22 | 21 | cnmetdval | ⊢ ( ( 0  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 0 ( abs  ∘   −  ) 𝑦 )  =  ( abs ‘ ( 0  −  𝑦 ) ) ) | 
						
							| 23 | 17 22 | mpan | ⊢ ( 𝑦  ∈  ℂ  →  ( 0 ( abs  ∘   −  ) 𝑦 )  =  ( abs ‘ ( 0  −  𝑦 ) ) ) | 
						
							| 24 |  | df-neg | ⊢ - 𝑦  =  ( 0  −  𝑦 ) | 
						
							| 25 | 24 | fveq2i | ⊢ ( abs ‘ - 𝑦 )  =  ( abs ‘ ( 0  −  𝑦 ) ) | 
						
							| 26 |  | absneg | ⊢ ( 𝑦  ∈  ℂ  →  ( abs ‘ - 𝑦 )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 27 | 25 26 | eqtr3id | ⊢ ( 𝑦  ∈  ℂ  →  ( abs ‘ ( 0  −  𝑦 ) )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 28 | 23 27 | eqtrd | ⊢ ( 𝑦  ∈  ℂ  →  ( 0 ( abs  ∘   −  ) 𝑦 )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 29 | 28 | breq1d | ⊢ ( 𝑦  ∈  ℂ  →  ( ( 0 ( abs  ∘   −  ) 𝑦 )  ≤  𝑅  ↔  ( abs ‘ 𝑦 )  ≤  𝑅 ) ) | 
						
							| 30 | 29 | rabbiia | ⊢ { 𝑦  ∈  ℂ  ∣  ( 0 ( abs  ∘   −  ) 𝑦 )  ≤  𝑅 }  =  { 𝑦  ∈  ℂ  ∣  ( abs ‘ 𝑦 )  ≤  𝑅 } | 
						
							| 31 | 5 30 | eqtr4i | ⊢ 𝐷  =  { 𝑦  ∈  ℂ  ∣  ( 0 ( abs  ∘   −  ) 𝑦 )  ≤  𝑅 } | 
						
							| 32 | 20 31 | blcld | ⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  0  ∈  ℂ  ∧  𝑅  ∈  ℝ* )  →  𝐷  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 33 | 16 18 19 32 | syl3anc | ⊢ ( 𝜑  →  𝐷  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 34 | 7 | rpred | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( abs ‘ 𝑦 )  =  ( abs ‘ 𝑥 ) ) | 
						
							| 36 | 35 | breq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( abs ‘ 𝑦 )  ≤  𝑅  ↔  ( abs ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 37 | 36 5 | elrab2 | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ℂ  ∧  ( abs ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 38 | 37 | simprbi | ⊢ ( 𝑥  ∈  𝐷  →  ( abs ‘ 𝑥 )  ≤  𝑅 ) | 
						
							| 39 | 38 | rgen | ⊢ ∀ 𝑥  ∈  𝐷 ( abs ‘ 𝑥 )  ≤  𝑅 | 
						
							| 40 |  | brralrspcev | ⊢ ( ( 𝑅  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐷 ( abs ‘ 𝑥 )  ≤  𝑅 )  →  ∃ 𝑠  ∈  ℝ ∀ 𝑥  ∈  𝐷 ( abs ‘ 𝑥 )  ≤  𝑠 ) | 
						
							| 41 | 34 39 40 | sylancl | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  ℝ ∀ 𝑥  ∈  𝐷 ( abs ‘ 𝑥 )  ≤  𝑠 ) | 
						
							| 42 |  | eqid | ⊢ ( 𝐽  ↾t  𝐷 )  =  ( 𝐽  ↾t  𝐷 ) | 
						
							| 43 | 6 42 | cnheibor | ⊢ ( 𝐷  ⊆  ℂ  →  ( ( 𝐽  ↾t  𝐷 )  ∈  Comp  ↔  ( 𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ∃ 𝑠  ∈  ℝ ∀ 𝑥  ∈  𝐷 ( abs ‘ 𝑥 )  ≤  𝑠 ) ) ) | 
						
							| 44 | 9 43 | ax-mp | ⊢ ( ( 𝐽  ↾t  𝐷 )  ∈  Comp  ↔  ( 𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ∃ 𝑠  ∈  ℝ ∀ 𝑥  ∈  𝐷 ( abs ‘ 𝑥 )  ≤  𝑠 ) ) | 
						
							| 45 | 33 41 44 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐽  ↾t  𝐷 )  ∈  Comp ) | 
						
							| 46 |  | plycn | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 47 | 3 46 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 48 |  | abscncf | ⊢ abs  ∈  ( ℂ –cn→ ℝ ) | 
						
							| 49 | 48 | a1i | ⊢ ( 𝜑  →  abs  ∈  ( ℂ –cn→ ℝ ) ) | 
						
							| 50 | 47 49 | cncfco | ⊢ ( 𝜑  →  ( abs  ∘  𝐹 )  ∈  ( ℂ –cn→ ℝ ) ) | 
						
							| 51 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 52 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 53 | 10 | toponrestid | ⊢ 𝐽  =  ( 𝐽  ↾t  ℂ ) | 
						
							| 54 | 6 | tgioo2 | ⊢ ( topGen ‘ ran  (,) )  =  ( 𝐽  ↾t  ℝ ) | 
						
							| 55 | 6 53 54 | cncfcn | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ℝ  ⊆  ℂ )  →  ( ℂ –cn→ ℝ )  =  ( 𝐽  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 56 | 51 52 55 | mp2an | ⊢ ( ℂ –cn→ ℝ )  =  ( 𝐽  Cn  ( topGen ‘ ran  (,) ) ) | 
						
							| 57 | 50 56 | eleqtrdi | ⊢ ( 𝜑  →  ( abs  ∘  𝐹 )  ∈  ( 𝐽  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 58 | 10 | toponunii | ⊢ ℂ  =  ∪  𝐽 | 
						
							| 59 | 58 | cnrest | ⊢ ( ( ( abs  ∘  𝐹 )  ∈  ( 𝐽  Cn  ( topGen ‘ ran  (,) ) )  ∧  𝐷  ⊆  ℂ )  →  ( ( abs  ∘  𝐹 )  ↾  𝐷 )  ∈  ( ( 𝐽  ↾t  𝐷 )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 60 | 57 9 59 | sylancl | ⊢ ( 𝜑  →  ( ( abs  ∘  𝐹 )  ↾  𝐷 )  ∈  ( ( 𝐽  ↾t  𝐷 )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 61 | 7 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝑅 ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑦  =  0  →  ( abs ‘ 𝑦 )  =  ( abs ‘ 0 ) ) | 
						
							| 63 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 64 | 62 63 | eqtrdi | ⊢ ( 𝑦  =  0  →  ( abs ‘ 𝑦 )  =  0 ) | 
						
							| 65 | 64 | breq1d | ⊢ ( 𝑦  =  0  →  ( ( abs ‘ 𝑦 )  ≤  𝑅  ↔  0  ≤  𝑅 ) ) | 
						
							| 66 | 65 5 | elrab2 | ⊢ ( 0  ∈  𝐷  ↔  ( 0  ∈  ℂ  ∧  0  ≤  𝑅 ) ) | 
						
							| 67 | 18 61 66 | sylanbrc | ⊢ ( 𝜑  →  0  ∈  𝐷 ) | 
						
							| 68 | 67 | ne0d | ⊢ ( 𝜑  →  𝐷  ≠  ∅ ) | 
						
							| 69 | 13 14 45 60 68 | evth2 | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝐷 ∀ 𝑥  ∈  𝐷 ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑧 )  ≤  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑥 ) ) | 
						
							| 70 |  | fvres | ⊢ ( 𝑧  ∈  𝐷  →  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑧 )  =  ( ( abs  ∘  𝐹 ) ‘ 𝑧 ) ) | 
						
							| 71 | 70 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑧 )  =  ( ( abs  ∘  𝐹 ) ‘ 𝑧 ) ) | 
						
							| 72 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 73 | 3 72 | syl | ⊢ ( 𝜑  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 75 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  𝑧  ∈  𝐷 ) | 
						
							| 76 | 9 75 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  𝑧  ∈  ℂ ) | 
						
							| 77 |  | fvco3 | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  =  ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 78 | 74 76 77 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑧 )  =  ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 79 | 71 78 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑧 )  =  ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 80 |  | fvres | ⊢ ( 𝑥  ∈  𝐷  →  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( abs  ∘  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑥 )  =  ( ( abs  ∘  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 82 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝐷 ) | 
						
							| 83 | 9 82 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  ℂ ) | 
						
							| 84 |  | fvco3 | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  𝑥  ∈  ℂ )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 85 | 74 83 84 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑥 )  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 86 | 81 85 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑥 )  =  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 87 | 79 86 | breq12d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  ∧  𝑥  ∈  𝐷 )  →  ( ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑧 )  ≤  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑥 )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 88 | 87 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐷 )  →  ( ∀ 𝑥  ∈  𝐷 ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑧 )  ≤  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 89 | 88 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  𝐷 ∀ 𝑥  ∈  𝐷 ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑧 )  ≤  ( ( ( abs  ∘  𝐹 )  ↾  𝐷 ) ‘ 𝑥 )  ↔  ∃ 𝑧  ∈  𝐷 ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 90 | 69 89 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝐷 ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 91 |  | ssrexv | ⊢ ( 𝐷  ⊆  ℂ  →  ( ∃ 𝑧  ∈  𝐷 ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑧  ∈  ℂ ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 92 | 9 90 91 | mpsyl | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℂ ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 93 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  0  ∈  𝐷 ) | 
						
							| 94 |  | 2fveq3 | ⊢ ( 𝑥  =  0  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( abs ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 95 | 94 | breq2d | ⊢ ( 𝑥  =  0  →  ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 0 ) ) ) ) | 
						
							| 96 | 95 | rspcv | ⊢ ( 0  ∈  𝐷  →  ( ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 0 ) ) ) ) | 
						
							| 97 | 93 96 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 0 ) ) ) ) | 
						
							| 98 | 73 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 99 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  0  ∈  ℂ )  →  ( 𝐹 ‘ 0 )  ∈  ℂ ) | 
						
							| 100 | 98 17 99 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( 𝐹 ‘ 0 )  ∈  ℂ ) | 
						
							| 101 | 100 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( abs ‘ ( 𝐹 ‘ 0 ) )  ∈  ℝ ) | 
						
							| 102 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  𝑥  ∈  ( ℂ  ∖  𝐷 ) ) | 
						
							| 103 | 102 | eldifad | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 104 | 98 103 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 105 | 104 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 106 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ∀ 𝑥  ∈  ℂ ( 𝑅  <  ( abs ‘ 𝑥 )  →  ( abs ‘ ( 𝐹 ‘ 0 ) )  <  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 107 | 102 | eldifbd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ¬  𝑥  ∈  𝐷 ) | 
						
							| 108 | 37 | baib | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  ∈  𝐷  ↔  ( abs ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 109 | 103 108 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( 𝑥  ∈  𝐷  ↔  ( abs ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 110 | 107 109 | mtbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ¬  ( abs ‘ 𝑥 )  ≤  𝑅 ) | 
						
							| 111 | 34 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  𝑅  ∈  ℝ ) | 
						
							| 112 | 103 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( abs ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 113 | 111 112 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( 𝑅  <  ( abs ‘ 𝑥 )  ↔  ¬  ( abs ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 114 | 110 113 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  𝑅  <  ( abs ‘ 𝑥 ) ) | 
						
							| 115 |  | rsp | ⊢ ( ∀ 𝑥  ∈  ℂ ( 𝑅  <  ( abs ‘ 𝑥 )  →  ( abs ‘ ( 𝐹 ‘ 0 ) )  <  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  ℂ  →  ( 𝑅  <  ( abs ‘ 𝑥 )  →  ( abs ‘ ( 𝐹 ‘ 0 ) )  <  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 116 | 106 103 114 115 | syl3c | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( abs ‘ ( 𝐹 ‘ 0 ) )  <  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 117 | 101 105 116 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( abs ‘ ( 𝐹 ‘ 0 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 118 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  𝑧  ∈  ℂ ) | 
						
							| 119 | 98 118 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 120 | 119 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 121 |  | letr | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 0 ) )  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 0 ) )  ∧  ( abs ‘ ( 𝐹 ‘ 0 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 122 | 120 101 105 121 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 0 ) )  ∧  ( abs ‘ ( 𝐹 ‘ 0 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 123 | 117 122 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑥  ∈  ( ℂ  ∖  𝐷 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 0 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 124 | 123 | ralrimdva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 0 ) )  →  ∀ 𝑥  ∈  ( ℂ  ∖  𝐷 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 125 | 97 124 | syld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  →  ∀ 𝑥  ∈  ( ℂ  ∖  𝐷 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 126 | 125 | ancld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  →  ( ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  ( ℂ  ∖  𝐷 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 127 |  | ralunb | ⊢ ( ∀ 𝑥  ∈  ( 𝐷  ∪  ( ℂ  ∖  𝐷 ) ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ↔  ( ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  ( ℂ  ∖  𝐷 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 128 |  | undif2 | ⊢ ( 𝐷  ∪  ( ℂ  ∖  𝐷 ) )  =  ( 𝐷  ∪  ℂ ) | 
						
							| 129 |  | ssequn1 | ⊢ ( 𝐷  ⊆  ℂ  ↔  ( 𝐷  ∪  ℂ )  =  ℂ ) | 
						
							| 130 | 9 129 | mpbi | ⊢ ( 𝐷  ∪  ℂ )  =  ℂ | 
						
							| 131 | 128 130 | eqtri | ⊢ ( 𝐷  ∪  ( ℂ  ∖  𝐷 ) )  =  ℂ | 
						
							| 132 | 131 | raleqi | ⊢ ( ∀ 𝑥  ∈  ( 𝐷  ∪  ( ℂ  ∖  𝐷 ) ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  ℂ ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 133 | 127 132 | bitr3i | ⊢ ( ( ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  ( ℂ  ∖  𝐷 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) )  ↔  ∀ 𝑥  ∈  ℂ ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 134 | 126 133 | imbitrdi | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  →  ∀ 𝑥  ∈  ℂ ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 135 | 134 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ℂ ∀ 𝑥  ∈  𝐷 ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑧  ∈  ℂ ∀ 𝑥  ∈  ℂ ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 136 | 92 135 | mpd | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℂ ∀ 𝑥  ∈  ℂ ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |