| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftalem.1 | ⊢ 𝐴  =  ( coeff ‘ 𝐹 ) | 
						
							| 2 |  | ftalem.2 | ⊢ 𝑁  =  ( deg ‘ 𝐹 ) | 
						
							| 3 |  | ftalem.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 4 |  | ftalem.4 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 5 |  | ftalem4.5 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  ≠  0 ) | 
						
							| 6 |  | ftalem4.6 | ⊢ 𝐾  =  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  ) | 
						
							| 7 |  | ftalem4.7 | ⊢ 𝑇  =  ( - ( ( 𝐹 ‘ 0 )  /  ( 𝐴 ‘ 𝐾 ) ) ↑𝑐 ( 1  /  𝐾 ) ) | 
						
							| 8 |  | ftalem4.8 | ⊢ 𝑈  =  ( ( abs ‘ ( 𝐹 ‘ 0 ) )  /  ( Σ 𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑇 ↑ 𝑘 ) ) )  +  1 ) ) | 
						
							| 9 |  | ftalem4.9 | ⊢ 𝑋  =  if ( 1  ≤  𝑈 ,  1 ,  𝑈 ) | 
						
							| 10 |  | ssrab2 | ⊢ { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 }  ⊆  ℕ | 
						
							| 11 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 12 | 10 11 | sseqtri | ⊢ { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 }  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝑁 ) ) | 
						
							| 14 | 13 | neeq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝐴 ‘ 𝑛 )  ≠  0  ↔  ( 𝐴 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 15 | 4 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 16 | 2 1 | dgreq0 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 𝐹  =  0𝑝  ↔  ( 𝐴 ‘ 𝑁 )  =  0 ) ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  ( 𝐹  =  0𝑝  ↔  ( 𝐴 ‘ 𝑁 )  =  0 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝐹  =  0𝑝  →  ( deg ‘ 𝐹 )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 19 |  | dgr0 | ⊢ ( deg ‘ 0𝑝 )  =  0 | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( 𝐹  =  0𝑝  →  ( deg ‘ 𝐹 )  =  0 ) | 
						
							| 21 | 2 20 | eqtrid | ⊢ ( 𝐹  =  0𝑝  →  𝑁  =  0 ) | 
						
							| 22 | 17 21 | biimtrrdi | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑁 )  =  0  →  𝑁  =  0 ) ) | 
						
							| 23 | 22 | necon3d | ⊢ ( 𝜑  →  ( 𝑁  ≠  0  →  ( 𝐴 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 24 | 15 23 | mpd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑁 )  ≠  0 ) | 
						
							| 25 | 14 4 24 | elrabd | ⊢ ( 𝜑  →  𝑁  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 } ) | 
						
							| 26 | 25 | ne0d | ⊢ ( 𝜑  →  { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 }  ≠  ∅ ) | 
						
							| 27 |  | infssuzcl | ⊢ ( ( { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 }  ⊆  ( ℤ≥ ‘ 1 )  ∧  { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 }  ≠  ∅ )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 } ) | 
						
							| 28 | 12 26 27 | sylancr | ⊢ ( 𝜑  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 } ,  ℝ ,   <  )  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 } ) | 
						
							| 29 | 6 28 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 } ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑛  =  𝐾  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐴 ‘ 𝐾 ) ) | 
						
							| 31 | 30 | neeq1d | ⊢ ( 𝑛  =  𝐾  →  ( ( 𝐴 ‘ 𝑛 )  ≠  0  ↔  ( 𝐴 ‘ 𝐾 )  ≠  0 ) ) | 
						
							| 32 | 31 | elrab | ⊢ ( 𝐾  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝐴 ‘ 𝑛 )  ≠  0 }  ↔  ( 𝐾  ∈  ℕ  ∧  ( 𝐴 ‘ 𝐾 )  ≠  0 ) ) | 
						
							| 33 | 29 32 | sylib | ⊢ ( 𝜑  →  ( 𝐾  ∈  ℕ  ∧  ( 𝐴 ‘ 𝐾 )  ≠  0 ) ) | 
						
							| 34 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 35 | 3 34 | syl | ⊢ ( 𝜑  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 36 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 37 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  0  ∈  ℂ )  →  ( 𝐹 ‘ 0 )  ∈  ℂ ) | 
						
							| 38 | 35 36 37 | sylancl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  ∈  ℂ ) | 
						
							| 39 | 1 | coef3 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 40 | 3 39 | syl | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 41 | 33 | simpld | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 42 | 41 | nnnn0d | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 43 | 40 42 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝐾 )  ∈  ℂ ) | 
						
							| 44 | 33 | simprd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝐾 )  ≠  0 ) | 
						
							| 45 | 38 43 44 | divcld | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 0 )  /  ( 𝐴 ‘ 𝐾 ) )  ∈  ℂ ) | 
						
							| 46 | 45 | negcld | ⊢ ( 𝜑  →  - ( ( 𝐹 ‘ 0 )  /  ( 𝐴 ‘ 𝐾 ) )  ∈  ℂ ) | 
						
							| 47 | 41 | nnrecred | ⊢ ( 𝜑  →  ( 1  /  𝐾 )  ∈  ℝ ) | 
						
							| 48 | 47 | recnd | ⊢ ( 𝜑  →  ( 1  /  𝐾 )  ∈  ℂ ) | 
						
							| 49 | 46 48 | cxpcld | ⊢ ( 𝜑  →  ( - ( ( 𝐹 ‘ 0 )  /  ( 𝐴 ‘ 𝐾 ) ) ↑𝑐 ( 1  /  𝐾 ) )  ∈  ℂ ) | 
						
							| 50 | 7 49 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 51 | 38 5 | absrpcld | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐹 ‘ 0 ) )  ∈  ℝ+ ) | 
						
							| 52 |  | fzfid | ⊢ ( 𝜑  →  ( ( 𝐾  +  1 ) ... 𝑁 )  ∈  Fin ) | 
						
							| 53 |  | peano2nn0 | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  +  1 )  ∈  ℕ0 ) | 
						
							| 54 | 42 53 | syl | ⊢ ( 𝜑  →  ( 𝐾  +  1 )  ∈  ℕ0 ) | 
						
							| 55 |  | elfzuz | ⊢ ( 𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) ) ) | 
						
							| 56 |  | eluznn0 | ⊢ ( ( ( 𝐾  +  1 )  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 57 | 54 55 56 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 58 | 40 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 59 | 57 58 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 60 |  | expcl | ⊢ ( ( 𝑇  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑇 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 61 | 50 57 60 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) )  →  ( 𝑇 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 62 | 59 61 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑇 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 63 | 62 | abscld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑇 ↑ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 64 | 52 63 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑇 ↑ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 65 | 62 | absge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) )  →  0  ≤  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑇 ↑ 𝑘 ) ) ) ) | 
						
							| 66 | 52 63 65 | fsumge0 | ⊢ ( 𝜑  →  0  ≤  Σ 𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑇 ↑ 𝑘 ) ) ) ) | 
						
							| 67 | 64 66 | ge0p1rpd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑇 ↑ 𝑘 ) ) )  +  1 )  ∈  ℝ+ ) | 
						
							| 68 | 51 67 | rpdivcld | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐹 ‘ 0 ) )  /  ( Σ 𝑘  ∈  ( ( 𝐾  +  1 ) ... 𝑁 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑇 ↑ 𝑘 ) ) )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 69 | 8 68 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  ℝ+ ) | 
						
							| 70 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 71 |  | ifcl | ⊢ ( ( 1  ∈  ℝ+  ∧  𝑈  ∈  ℝ+ )  →  if ( 1  ≤  𝑈 ,  1 ,  𝑈 )  ∈  ℝ+ ) | 
						
							| 72 | 70 69 71 | sylancr | ⊢ ( 𝜑  →  if ( 1  ≤  𝑈 ,  1 ,  𝑈 )  ∈  ℝ+ ) | 
						
							| 73 | 9 72 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 74 | 50 69 73 | 3jca | ⊢ ( 𝜑  →  ( 𝑇  ∈  ℂ  ∧  𝑈  ∈  ℝ+  ∧  𝑋  ∈  ℝ+ ) ) | 
						
							| 75 | 33 74 | jca | ⊢ ( 𝜑  →  ( ( 𝐾  ∈  ℕ  ∧  ( 𝐴 ‘ 𝐾 )  ≠  0 )  ∧  ( 𝑇  ∈  ℂ  ∧  𝑈  ∈  ℝ+  ∧  𝑋  ∈  ℝ+ ) ) ) |