Metamath Proof Explorer


Theorem ftalem4

Description: Lemma for fta : Closure of the auxiliary variables for ftalem5 . (Contributed by Mario Carneiro, 20-Sep-2014) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses ftalem.1 A=coeffF
ftalem.2 N=degF
ftalem.3 φFPolyS
ftalem.4 φN
ftalem4.5 φF00
ftalem4.6 K=supn|An0<
ftalem4.7 T=F0AK1K
ftalem4.8 U=F0k=K+1NAkTk+1
ftalem4.9 X=if1U1U
Assertion ftalem4 φKAK0TU+X+

Proof

Step Hyp Ref Expression
1 ftalem.1 A=coeffF
2 ftalem.2 N=degF
3 ftalem.3 φFPolyS
4 ftalem.4 φN
5 ftalem4.5 φF00
6 ftalem4.6 K=supn|An0<
7 ftalem4.7 T=F0AK1K
8 ftalem4.8 U=F0k=K+1NAkTk+1
9 ftalem4.9 X=if1U1U
10 ssrab2 n|An0
11 nnuz =1
12 10 11 sseqtri n|An01
13 fveq2 n=NAn=AN
14 13 neeq1d n=NAn0AN0
15 4 nnne0d φN0
16 2 1 dgreq0 FPolySF=0𝑝AN=0
17 3 16 syl φF=0𝑝AN=0
18 fveq2 F=0𝑝degF=deg0𝑝
19 dgr0 deg0𝑝=0
20 18 19 eqtrdi F=0𝑝degF=0
21 2 20 eqtrid F=0𝑝N=0
22 17 21 syl6bir φAN=0N=0
23 22 necon3d φN0AN0
24 15 23 mpd φAN0
25 14 4 24 elrabd φNn|An0
26 25 ne0d φn|An0
27 infssuzcl n|An01n|An0supn|An0<n|An0
28 12 26 27 sylancr φsupn|An0<n|An0
29 6 28 eqeltrid φKn|An0
30 fveq2 n=KAn=AK
31 30 neeq1d n=KAn0AK0
32 31 elrab Kn|An0KAK0
33 29 32 sylib φKAK0
34 plyf FPolySF:
35 3 34 syl φF:
36 0cn 0
37 ffvelcdm F:0F0
38 35 36 37 sylancl φF0
39 1 coef3 FPolySA:0
40 3 39 syl φA:0
41 33 simpld φK
42 41 nnnn0d φK0
43 40 42 ffvelcdmd φAK
44 33 simprd φAK0
45 38 43 44 divcld φF0AK
46 45 negcld φF0AK
47 41 nnrecred φ1K
48 47 recnd φ1K
49 46 48 cxpcld φF0AK1K
50 7 49 eqeltrid φT
51 38 5 absrpcld φF0+
52 fzfid φK+1NFin
53 peano2nn0 K0K+10
54 42 53 syl φK+10
55 elfzuz kK+1NkK+1
56 eluznn0 K+10kK+1k0
57 54 55 56 syl2an φkK+1Nk0
58 40 ffvelcdmda φk0Ak
59 57 58 syldan φkK+1NAk
60 expcl Tk0Tk
61 50 57 60 syl2an2r φkK+1NTk
62 59 61 mulcld φkK+1NAkTk
63 62 abscld φkK+1NAkTk
64 52 63 fsumrecl φk=K+1NAkTk
65 62 absge0d φkK+1N0AkTk
66 52 63 65 fsumge0 φ0k=K+1NAkTk
67 64 66 ge0p1rpd φk=K+1NAkTk+1+
68 51 67 rpdivcld φF0k=K+1NAkTk+1+
69 8 68 eqeltrid φU+
70 1rp 1+
71 ifcl 1+U+if1U1U+
72 70 69 71 sylancr φif1U1U+
73 9 72 eqeltrid φX+
74 50 69 73 3jca φTU+X+
75 33 74 jca φKAK0TU+X+