Metamath Proof Explorer


Theorem ftalem5

Description: Lemma for fta : Main proof. We have already shifted the minimum found in ftalem3 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let K be the lowest term in the polynomial that is nonzero, and let T be a K -th root of -u F ( 0 ) / A ( K ) . Then an evaluation of F ( T X ) where X is a sufficiently small positive number yields F ( 0 ) for the first term and -u F ( 0 ) x. X ^ K for the K -th term, and all higher terms are bounded because X is small. Thus, abs ( F ( T X ) ) <_ abs ( F ( 0 ) ) ( 1 - X ^ K ) < abs ( F ( 0 ) ) , in contradiction to our choice of F ( 0 ) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses ftalem.1 A = coeff F
ftalem.2 N = deg F
ftalem.3 φ F Poly S
ftalem.4 φ N
ftalem4.5 φ F 0 0
ftalem4.6 K = sup n | A n 0 <
ftalem4.7 T = F 0 A K 1 K
ftalem4.8 U = F 0 k = K + 1 N A k T k + 1
ftalem4.9 X = if 1 U 1 U
Assertion ftalem5 φ x F x < F 0

Proof

Step Hyp Ref Expression
1 ftalem.1 A = coeff F
2 ftalem.2 N = deg F
3 ftalem.3 φ F Poly S
4 ftalem.4 φ N
5 ftalem4.5 φ F 0 0
6 ftalem4.6 K = sup n | A n 0 <
7 ftalem4.7 T = F 0 A K 1 K
8 ftalem4.8 U = F 0 k = K + 1 N A k T k + 1
9 ftalem4.9 X = if 1 U 1 U
10 1 2 3 4 5 6 7 8 9 ftalem4 φ K A K 0 T U + X +
11 10 simprd φ T U + X +
12 11 simp1d φ T
13 11 simp3d φ X +
14 13 rpred φ X
15 14 recnd φ X
16 12 15 mulcld φ T X
17 plyf F Poly S F :
18 3 17 syl φ F :
19 18 16 ffvelrnd φ F T X
20 19 abscld φ F T X
21 0cn 0
22 ffvelrn F : 0 F 0
23 18 21 22 sylancl φ F 0
24 23 abscld φ F 0
25 10 simpld φ K A K 0
26 25 simpld φ K
27 26 nnnn0d φ K 0
28 14 27 reexpcld φ X K
29 24 28 remulcld φ F 0 X K
30 24 29 resubcld φ F 0 F 0 X K
31 fzfid φ K + 1 N Fin
32 1 coef3 F Poly S A : 0
33 3 32 syl φ A : 0
34 peano2nn0 K 0 K + 1 0
35 27 34 syl φ K + 1 0
36 elfzuz k K + 1 N k K + 1
37 eluznn0 K + 1 0 k K + 1 k 0
38 35 36 37 syl2an φ k K + 1 N k 0
39 ffvelrn A : 0 k 0 A k
40 33 38 39 syl2an2r φ k K + 1 N A k
41 16 adantr φ k K + 1 N T X
42 41 38 expcld φ k K + 1 N T X k
43 40 42 mulcld φ k K + 1 N A k T X k
44 31 43 fsumcl φ k = K + 1 N A k T X k
45 44 abscld φ k = K + 1 N A k T X k
46 30 45 readdcld φ F 0 - F 0 X K + k = K + 1 N A k T X k
47 fzfid φ 0 K Fin
48 elfznn0 k 0 K k 0
49 33 48 39 syl2an φ k 0 K A k
50 expcl T X k 0 T X k
51 16 48 50 syl2an φ k 0 K T X k
52 49 51 mulcld φ k 0 K A k T X k
53 47 52 fsumcl φ k = 0 K A k T X k
54 53 44 abstrid φ k = 0 K A k T X k + k = K + 1 N A k T X k k = 0 K A k T X k + k = K + 1 N A k T X k
55 1 2 coeid2 F Poly S T X F T X = k = 0 N A k T X k
56 3 16 55 syl2anc φ F T X = k = 0 N A k T X k
57 26 nnred φ K
58 57 ltp1d φ K < K + 1
59 fzdisj K < K + 1 0 K K + 1 N =
60 58 59 syl φ 0 K K + 1 N =
61 ssrab2 n | A n 0
62 nnuz = 1
63 61 62 sseqtri n | A n 0 1
64 fveq2 n = N A n = A N
65 64 neeq1d n = N A n 0 A N 0
66 4 nnne0d φ N 0
67 2 1 dgreq0 F Poly S F = 0 𝑝 A N = 0
68 3 67 syl φ F = 0 𝑝 A N = 0
69 fveq2 F = 0 𝑝 deg F = deg 0 𝑝
70 dgr0 deg 0 𝑝 = 0
71 69 70 eqtrdi F = 0 𝑝 deg F = 0
72 2 71 syl5eq F = 0 𝑝 N = 0
73 68 72 syl6bir φ A N = 0 N = 0
74 73 necon3d φ N 0 A N 0
75 66 74 mpd φ A N 0
76 65 4 75 elrabd φ N n | A n 0
77 infssuzle n | A n 0 1 N n | A n 0 sup n | A n 0 < N
78 63 76 77 sylancr φ sup n | A n 0 < N
79 6 78 eqbrtrid φ K N
80 nn0uz 0 = 0
81 27 80 eleqtrdi φ K 0
82 4 nnzd φ N
83 elfz5 K 0 N K 0 N K N
84 81 82 83 syl2anc φ K 0 N K N
85 79 84 mpbird φ K 0 N
86 fzsplit K 0 N 0 N = 0 K K + 1 N
87 85 86 syl φ 0 N = 0 K K + 1 N
88 fzfid φ 0 N Fin
89 elfznn0 k 0 N k 0
90 33 89 39 syl2an φ k 0 N A k
91 16 89 50 syl2an φ k 0 N T X k
92 90 91 mulcld φ k 0 N A k T X k
93 60 87 88 92 fsumsplit φ k = 0 N A k T X k = k = 0 K A k T X k + k = K + 1 N A k T X k
94 56 93 eqtrd φ F T X = k = 0 K A k T X k + k = K + 1 N A k T X k
95 94 fveq2d φ F T X = k = 0 K A k T X k + k = K + 1 N A k T X k
96 1 coefv0 F Poly S F 0 = A 0
97 3 96 syl φ F 0 = A 0
98 97 eqcomd φ A 0 = F 0
99 16 exp0d φ T X 0 = 1
100 98 99 oveq12d φ A 0 T X 0 = F 0 1
101 23 mulid1d φ F 0 1 = F 0
102 100 101 eqtrd φ A 0 T X 0 = F 0
103 1e0p1 1 = 0 + 1
104 103 oveq1i 1 K = 0 + 1 K
105 104 sumeq1i k = 1 K A k T X k = k = 0 + 1 K A k T X k
106 26 62 eleqtrdi φ K 1
107 elfznn k 1 K k
108 107 nnnn0d k 1 K k 0
109 33 108 39 syl2an φ k 1 K A k
110 16 108 50 syl2an φ k 1 K T X k
111 109 110 mulcld φ k 1 K A k T X k
112 fveq2 k = K A k = A K
113 oveq2 k = K T X k = T X K
114 112 113 oveq12d k = K A k T X k = A K T X K
115 106 111 114 fsumm1 φ k = 1 K A k T X k = k = 1 K 1 A k T X k + A K T X K
116 105 115 syl5eqr φ k = 0 + 1 K A k T X k = k = 1 K 1 A k T X k + A K T X K
117 elfznn k 1 K 1 k
118 117 adantl φ k 1 K 1 k
119 118 nnred φ k 1 K 1 k
120 57 adantr φ k 1 K 1 K
121 peano2rem K K 1
122 120 121 syl φ k 1 K 1 K 1
123 elfzle2 k 1 K 1 k K 1
124 123 adantl φ k 1 K 1 k K 1
125 120 ltm1d φ k 1 K 1 K 1 < K
126 119 122 120 124 125 lelttrd φ k 1 K 1 k < K
127 119 120 ltnled φ k 1 K 1 k < K ¬ K k
128 126 127 mpbid φ k 1 K 1 ¬ K k
129 infssuzle n | A n 0 1 k n | A n 0 sup n | A n 0 < k
130 6 129 eqbrtrid n | A n 0 1 k n | A n 0 K k
131 63 130 mpan k n | A n 0 K k
132 128 131 nsyl φ k 1 K 1 ¬ k n | A n 0
133 fveq2 n = k A n = A k
134 133 neeq1d n = k A n 0 A k 0
135 134 elrab3 k k n | A n 0 A k 0
136 118 135 syl φ k 1 K 1 k n | A n 0 A k 0
137 136 necon2bbid φ k 1 K 1 A k = 0 ¬ k n | A n 0
138 132 137 mpbird φ k 1 K 1 A k = 0
139 138 oveq1d φ k 1 K 1 A k T X k = 0 T X k
140 117 nnnn0d k 1 K 1 k 0
141 16 140 50 syl2an φ k 1 K 1 T X k
142 141 mul02d φ k 1 K 1 0 T X k = 0
143 139 142 eqtrd φ k 1 K 1 A k T X k = 0
144 143 sumeq2dv φ k = 1 K 1 A k T X k = k = 1 K 1 0
145 fzfi 1 K 1 Fin
146 145 olci 1 K 1 1 1 K 1 Fin
147 sumz 1 K 1 1 1 K 1 Fin k = 1 K 1 0 = 0
148 146 147 ax-mp k = 1 K 1 0 = 0
149 144 148 eqtrdi φ k = 1 K 1 A k T X k = 0
150 12 15 27 mulexpd φ T X K = T K X K
151 150 oveq2d φ A K T X K = A K T K X K
152 33 27 ffvelrnd φ A K
153 12 27 expcld φ T K
154 28 recnd φ X K
155 152 153 154 mulassd φ A K T K X K = A K T K X K
156 151 155 eqtr4d φ A K T X K = A K T K X K
157 7 oveq1i T K = F 0 A K 1 K K
158 57 recnd φ K
159 26 nnne0d φ K 0
160 158 159 recid2d φ 1 K K = 1
161 160 oveq2d φ F 0 A K 1 K K = F 0 A K 1
162 25 simprd φ A K 0
163 23 152 162 divcld φ F 0 A K
164 163 negcld φ F 0 A K
165 26 nnrecred φ 1 K
166 165 recnd φ 1 K
167 164 166 27 cxpmul2d φ F 0 A K 1 K K = F 0 A K 1 K K
168 164 cxp1d φ F 0 A K 1 = F 0 A K
169 161 167 168 3eqtr3d φ F 0 A K 1 K K = F 0 A K
170 157 169 syl5eq φ T K = F 0 A K
171 170 oveq2d φ A K T K = A K F 0 A K
172 152 163 mulneg2d φ A K F 0 A K = A K F 0 A K
173 23 152 162 divcan2d φ A K F 0 A K = F 0
174 173 negeqd φ A K F 0 A K = F 0
175 171 172 174 3eqtrd φ A K T K = F 0
176 175 oveq1d φ A K T K X K = F 0 X K
177 23 154 mulneg1d φ F 0 X K = F 0 X K
178 156 176 177 3eqtrd φ A K T X K = F 0 X K
179 149 178 oveq12d φ k = 1 K 1 A k T X k + A K T X K = 0 + F 0 X K
180 23 154 mulcld φ F 0 X K
181 180 negcld φ F 0 X K
182 181 addid2d φ 0 + F 0 X K = F 0 X K
183 116 179 182 3eqtrd φ k = 0 + 1 K A k T X k = F 0 X K
184 102 183 oveq12d φ A 0 T X 0 + k = 0 + 1 K A k T X k = F 0 + F 0 X K
185 fveq2 k = 0 A k = A 0
186 oveq2 k = 0 T X k = T X 0
187 185 186 oveq12d k = 0 A k T X k = A 0 T X 0
188 81 52 187 fsum1p φ k = 0 K A k T X k = A 0 T X 0 + k = 0 + 1 K A k T X k
189 101 oveq1d φ F 0 1 F 0 X K = F 0 F 0 X K
190 1cnd φ 1
191 23 190 154 subdid φ F 0 1 X K = F 0 1 F 0 X K
192 23 180 negsubd φ F 0 + F 0 X K = F 0 F 0 X K
193 189 191 192 3eqtr4d φ F 0 1 X K = F 0 + F 0 X K
194 184 188 193 3eqtr4d φ k = 0 K A k T X k = F 0 1 X K
195 194 fveq2d φ k = 0 K A k T X k = F 0 1 X K
196 1re 1
197 resubcl 1 X K 1 X K
198 196 28 197 sylancr φ 1 X K
199 198 recnd φ 1 X K
200 23 199 absmuld φ F 0 1 X K = F 0 1 X K
201 13 rpge0d φ 0 X
202 11 simp2d φ U +
203 202 rpred φ U
204 min1 1 U if 1 U 1 U 1
205 196 203 204 sylancr φ if 1 U 1 U 1
206 9 205 eqbrtrid φ X 1
207 exple1 X 0 X X 1 K 0 X K 1
208 14 201 206 27 207 syl31anc φ X K 1
209 subge0 1 X K 0 1 X K X K 1
210 196 28 209 sylancr φ 0 1 X K X K 1
211 208 210 mpbird φ 0 1 X K
212 198 211 absidd φ 1 X K = 1 X K
213 212 oveq2d φ F 0 1 X K = F 0 1 X K
214 24 recnd φ F 0
215 214 190 154 subdid φ F 0 1 X K = F 0 1 F 0 X K
216 214 mulid1d φ F 0 1 = F 0
217 216 oveq1d φ F 0 1 F 0 X K = F 0 F 0 X K
218 213 215 217 3eqtrd φ F 0 1 X K = F 0 F 0 X K
219 195 200 218 3eqtrrd φ F 0 F 0 X K = k = 0 K A k T X k
220 219 oveq1d φ F 0 - F 0 X K + k = K + 1 N A k T X k = k = 0 K A k T X k + k = K + 1 N A k T X k
221 54 95 220 3brtr4d φ F T X F 0 - F 0 X K + k = K + 1 N A k T X k
222 43 abscld φ k K + 1 N A k T X k
223 31 222 fsumrecl φ k = K + 1 N A k T X k
224 31 43 fsumabs φ k = K + 1 N A k T X k k = K + 1 N A k T X k
225 expcl T k 0 T k
226 12 38 225 syl2an2r φ k K + 1 N T k
227 40 226 mulcld φ k K + 1 N A k T k
228 227 abscld φ k K + 1 N A k T k
229 31 228 fsumrecl φ k = K + 1 N A k T k
230 14 35 reexpcld φ X K + 1
231 229 230 remulcld φ k = K + 1 N A k T k X K + 1
232 230 adantr φ k K + 1 N X K + 1
233 228 232 remulcld φ k K + 1 N A k T k X K + 1
234 12 adantr φ k K + 1 N T
235 15 adantr φ k K + 1 N X
236 234 235 38 mulexpd φ k K + 1 N T X k = T k X k
237 236 oveq2d φ k K + 1 N A k T X k = A k T k X k
238 14 adantr φ k K + 1 N X
239 238 38 reexpcld φ k K + 1 N X k
240 239 recnd φ k K + 1 N X k
241 40 226 240 mulassd φ k K + 1 N A k T k X k = A k T k X k
242 237 241 eqtr4d φ k K + 1 N A k T X k = A k T k X k
243 242 fveq2d φ k K + 1 N A k T X k = A k T k X k
244 227 240 absmuld φ k K + 1 N A k T k X k = A k T k X k
245 elfzelz k K + 1 N k
246 rpexpcl X + k X k +
247 13 245 246 syl2an φ k K + 1 N X k +
248 247 rpge0d φ k K + 1 N 0 X k
249 239 248 absidd φ k K + 1 N X k = X k
250 249 oveq2d φ k K + 1 N A k T k X k = A k T k X k
251 243 244 250 3eqtrd φ k K + 1 N A k T X k = A k T k X k
252 227 absge0d φ k K + 1 N 0 A k T k
253 35 adantr φ k K + 1 N K + 1 0
254 36 adantl φ k K + 1 N k K + 1
255 201 adantr φ k K + 1 N 0 X
256 206 adantr φ k K + 1 N X 1
257 238 253 254 255 256 leexp2rd φ k K + 1 N X k X K + 1
258 239 232 228 252 257 lemul2ad φ k K + 1 N A k T k X k A k T k X K + 1
259 251 258 eqbrtrd φ k K + 1 N A k T X k A k T k X K + 1
260 31 222 233 259 fsumle φ k = K + 1 N A k T X k k = K + 1 N A k T k X K + 1
261 230 recnd φ X K + 1
262 228 recnd φ k K + 1 N A k T k
263 31 261 262 fsummulc1 φ k = K + 1 N A k T k X K + 1 = k = K + 1 N A k T k X K + 1
264 260 263 breqtrrd φ k = K + 1 N A k T X k k = K + 1 N A k T k X K + 1
265 15 27 expp1d φ X K + 1 = X K X
266 154 15 mulcomd φ X K X = X X K
267 265 266 eqtrd φ X K + 1 = X X K
268 267 oveq2d φ k = K + 1 N A k T k X K + 1 = k = K + 1 N A k T k X X K
269 229 recnd φ k = K + 1 N A k T k
270 269 15 154 mulassd φ k = K + 1 N A k T k X X K = k = K + 1 N A k T k X X K
271 268 270 eqtr4d φ k = K + 1 N A k T k X K + 1 = k = K + 1 N A k T k X X K
272 229 14 remulcld φ k = K + 1 N A k T k X
273 nnssz
274 61 273 sstri n | A n 0
275 76 ne0d φ n | A n 0
276 infssuzcl n | A n 0 1 n | A n 0 sup n | A n 0 < n | A n 0
277 63 275 276 sylancr φ sup n | A n 0 < n | A n 0
278 6 277 eqeltrid φ K n | A n 0
279 274 278 sseldi φ K
280 13 279 rpexpcld φ X K +
281 peano2re k = K + 1 N A k T k k = K + 1 N A k T k + 1
282 229 281 syl φ k = K + 1 N A k T k + 1
283 282 14 remulcld φ k = K + 1 N A k T k + 1 X
284 229 ltp1d φ k = K + 1 N A k T k < k = K + 1 N A k T k + 1
285 229 282 13 284 ltmul1dd φ k = K + 1 N A k T k X < k = K + 1 N A k T k + 1 X
286 min2 1 U if 1 U 1 U U
287 196 203 286 sylancr φ if 1 U 1 U U
288 9 287 eqbrtrid φ X U
289 288 8 breqtrdi φ X F 0 k = K + 1 N A k T k + 1
290 0red φ 0
291 31 228 252 fsumge0 φ 0 k = K + 1 N A k T k
292 290 229 282 291 284 lelttrd φ 0 < k = K + 1 N A k T k + 1
293 lemuldiv2 X F 0 k = K + 1 N A k T k + 1 0 < k = K + 1 N A k T k + 1 k = K + 1 N A k T k + 1 X F 0 X F 0 k = K + 1 N A k T k + 1
294 14 24 282 292 293 syl112anc φ k = K + 1 N A k T k + 1 X F 0 X F 0 k = K + 1 N A k T k + 1
295 289 294 mpbird φ k = K + 1 N A k T k + 1 X F 0
296 272 283 24 285 295 ltletrd φ k = K + 1 N A k T k X < F 0
297 272 24 280 296 ltmul1dd φ k = K + 1 N A k T k X X K < F 0 X K
298 271 297 eqbrtrd φ k = K + 1 N A k T k X K + 1 < F 0 X K
299 223 231 29 264 298 lelttrd φ k = K + 1 N A k T X k < F 0 X K
300 45 223 29 224 299 lelttrd φ k = K + 1 N A k T X k < F 0 X K
301 45 29 24 300 ltsub2dd φ F 0 F 0 X K < F 0 k = K + 1 N A k T X k
302 30 45 24 ltaddsubd φ F 0 - F 0 X K + k = K + 1 N A k T X k < F 0 F 0 F 0 X K < F 0 k = K + 1 N A k T X k
303 301 302 mpbird φ F 0 - F 0 X K + k = K + 1 N A k T X k < F 0
304 20 46 24 221 303 lelttrd φ F T X < F 0
305 2fveq3 x = T X F x = F T X
306 305 breq1d x = T X F x < F 0 F T X < F 0
307 306 rspcev T X F T X < F 0 x F x < F 0
308 16 304 307 syl2anc φ x F x < F 0