Metamath Proof Explorer


Theorem cxpcld

Description: Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φA
cxpcld.2 φB
Assertion cxpcld φAB

Proof

Step Hyp Ref Expression
1 cxp0d.1 φA
2 cxpcld.2 φB
3 cxpcl ABAB
4 1 2 3 syl2anc φAB