| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftalem.1 |
|- A = ( coeff ` F ) |
| 2 |
|
ftalem.2 |
|- N = ( deg ` F ) |
| 3 |
|
ftalem.3 |
|- ( ph -> F e. ( Poly ` S ) ) |
| 4 |
|
ftalem.4 |
|- ( ph -> N e. NN ) |
| 5 |
|
ftalem4.5 |
|- ( ph -> ( F ` 0 ) =/= 0 ) |
| 6 |
|
ftalem4.6 |
|- K = inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) |
| 7 |
|
ftalem4.7 |
|- T = ( -u ( ( F ` 0 ) / ( A ` K ) ) ^c ( 1 / K ) ) |
| 8 |
|
ftalem4.8 |
|- U = ( ( abs ` ( F ` 0 ) ) / ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) ) |
| 9 |
|
ftalem4.9 |
|- X = if ( 1 <_ U , 1 , U ) |
| 10 |
|
ssrab2 |
|- { n e. NN | ( A ` n ) =/= 0 } C_ NN |
| 11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 12 |
10 11
|
sseqtri |
|- { n e. NN | ( A ` n ) =/= 0 } C_ ( ZZ>= ` 1 ) |
| 13 |
|
fveq2 |
|- ( n = N -> ( A ` n ) = ( A ` N ) ) |
| 14 |
13
|
neeq1d |
|- ( n = N -> ( ( A ` n ) =/= 0 <-> ( A ` N ) =/= 0 ) ) |
| 15 |
4
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 16 |
2 1
|
dgreq0 |
|- ( F e. ( Poly ` S ) -> ( F = 0p <-> ( A ` N ) = 0 ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> ( F = 0p <-> ( A ` N ) = 0 ) ) |
| 18 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
| 19 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 20 |
18 19
|
eqtrdi |
|- ( F = 0p -> ( deg ` F ) = 0 ) |
| 21 |
2 20
|
eqtrid |
|- ( F = 0p -> N = 0 ) |
| 22 |
17 21
|
biimtrrdi |
|- ( ph -> ( ( A ` N ) = 0 -> N = 0 ) ) |
| 23 |
22
|
necon3d |
|- ( ph -> ( N =/= 0 -> ( A ` N ) =/= 0 ) ) |
| 24 |
15 23
|
mpd |
|- ( ph -> ( A ` N ) =/= 0 ) |
| 25 |
14 4 24
|
elrabd |
|- ( ph -> N e. { n e. NN | ( A ` n ) =/= 0 } ) |
| 26 |
25
|
ne0d |
|- ( ph -> { n e. NN | ( A ` n ) =/= 0 } =/= (/) ) |
| 27 |
|
infssuzcl |
|- ( ( { n e. NN | ( A ` n ) =/= 0 } C_ ( ZZ>= ` 1 ) /\ { n e. NN | ( A ` n ) =/= 0 } =/= (/) ) -> inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) e. { n e. NN | ( A ` n ) =/= 0 } ) |
| 28 |
12 26 27
|
sylancr |
|- ( ph -> inf ( { n e. NN | ( A ` n ) =/= 0 } , RR , < ) e. { n e. NN | ( A ` n ) =/= 0 } ) |
| 29 |
6 28
|
eqeltrid |
|- ( ph -> K e. { n e. NN | ( A ` n ) =/= 0 } ) |
| 30 |
|
fveq2 |
|- ( n = K -> ( A ` n ) = ( A ` K ) ) |
| 31 |
30
|
neeq1d |
|- ( n = K -> ( ( A ` n ) =/= 0 <-> ( A ` K ) =/= 0 ) ) |
| 32 |
31
|
elrab |
|- ( K e. { n e. NN | ( A ` n ) =/= 0 } <-> ( K e. NN /\ ( A ` K ) =/= 0 ) ) |
| 33 |
29 32
|
sylib |
|- ( ph -> ( K e. NN /\ ( A ` K ) =/= 0 ) ) |
| 34 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
| 35 |
3 34
|
syl |
|- ( ph -> F : CC --> CC ) |
| 36 |
|
0cn |
|- 0 e. CC |
| 37 |
|
ffvelcdm |
|- ( ( F : CC --> CC /\ 0 e. CC ) -> ( F ` 0 ) e. CC ) |
| 38 |
35 36 37
|
sylancl |
|- ( ph -> ( F ` 0 ) e. CC ) |
| 39 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
| 40 |
3 39
|
syl |
|- ( ph -> A : NN0 --> CC ) |
| 41 |
33
|
simpld |
|- ( ph -> K e. NN ) |
| 42 |
41
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 43 |
40 42
|
ffvelcdmd |
|- ( ph -> ( A ` K ) e. CC ) |
| 44 |
33
|
simprd |
|- ( ph -> ( A ` K ) =/= 0 ) |
| 45 |
38 43 44
|
divcld |
|- ( ph -> ( ( F ` 0 ) / ( A ` K ) ) e. CC ) |
| 46 |
45
|
negcld |
|- ( ph -> -u ( ( F ` 0 ) / ( A ` K ) ) e. CC ) |
| 47 |
41
|
nnrecred |
|- ( ph -> ( 1 / K ) e. RR ) |
| 48 |
47
|
recnd |
|- ( ph -> ( 1 / K ) e. CC ) |
| 49 |
46 48
|
cxpcld |
|- ( ph -> ( -u ( ( F ` 0 ) / ( A ` K ) ) ^c ( 1 / K ) ) e. CC ) |
| 50 |
7 49
|
eqeltrid |
|- ( ph -> T e. CC ) |
| 51 |
38 5
|
absrpcld |
|- ( ph -> ( abs ` ( F ` 0 ) ) e. RR+ ) |
| 52 |
|
fzfid |
|- ( ph -> ( ( K + 1 ) ... N ) e. Fin ) |
| 53 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
| 54 |
42 53
|
syl |
|- ( ph -> ( K + 1 ) e. NN0 ) |
| 55 |
|
elfzuz |
|- ( k e. ( ( K + 1 ) ... N ) -> k e. ( ZZ>= ` ( K + 1 ) ) ) |
| 56 |
|
eluznn0 |
|- ( ( ( K + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> k e. NN0 ) |
| 57 |
54 55 56
|
syl2an |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> k e. NN0 ) |
| 58 |
40
|
ffvelcdmda |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 59 |
57 58
|
syldan |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( A ` k ) e. CC ) |
| 60 |
|
expcl |
|- ( ( T e. CC /\ k e. NN0 ) -> ( T ^ k ) e. CC ) |
| 61 |
50 57 60
|
syl2an2r |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( T ^ k ) e. CC ) |
| 62 |
59 61
|
mulcld |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( ( A ` k ) x. ( T ^ k ) ) e. CC ) |
| 63 |
62
|
abscld |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) e. RR ) |
| 64 |
52 63
|
fsumrecl |
|- ( ph -> sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) e. RR ) |
| 65 |
62
|
absge0d |
|- ( ( ph /\ k e. ( ( K + 1 ) ... N ) ) -> 0 <_ ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) ) |
| 66 |
52 63 65
|
fsumge0 |
|- ( ph -> 0 <_ sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) ) |
| 67 |
64 66
|
ge0p1rpd |
|- ( ph -> ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) e. RR+ ) |
| 68 |
51 67
|
rpdivcld |
|- ( ph -> ( ( abs ` ( F ` 0 ) ) / ( sum_ k e. ( ( K + 1 ) ... N ) ( abs ` ( ( A ` k ) x. ( T ^ k ) ) ) + 1 ) ) e. RR+ ) |
| 69 |
8 68
|
eqeltrid |
|- ( ph -> U e. RR+ ) |
| 70 |
|
1rp |
|- 1 e. RR+ |
| 71 |
|
ifcl |
|- ( ( 1 e. RR+ /\ U e. RR+ ) -> if ( 1 <_ U , 1 , U ) e. RR+ ) |
| 72 |
70 69 71
|
sylancr |
|- ( ph -> if ( 1 <_ U , 1 , U ) e. RR+ ) |
| 73 |
9 72
|
eqeltrid |
|- ( ph -> X e. RR+ ) |
| 74 |
50 69 73
|
3jca |
|- ( ph -> ( T e. CC /\ U e. RR+ /\ X e. RR+ ) ) |
| 75 |
33 74
|
jca |
|- ( ph -> ( ( K e. NN /\ ( A ` K ) =/= 0 ) /\ ( T e. CC /\ U e. RR+ /\ X e. RR+ ) ) ) |