| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnheibor.2 |
|
| 2 |
|
cnheibor.3 |
|
| 3 |
1
|
cnfldhaus |
|
| 4 |
|
simpl |
|
| 5 |
|
simpr |
|
| 6 |
2 5
|
eqeltrrid |
|
| 7 |
1
|
cnfldtopon |
|
| 8 |
7
|
toponunii |
|
| 9 |
8
|
hauscmp |
|
| 10 |
3 4 6 9
|
mp3an2i |
|
| 11 |
1
|
cnfldtop |
|
| 12 |
8
|
restuni |
|
| 13 |
11 4 12
|
sylancr |
|
| 14 |
2
|
unieqi |
|
| 15 |
13 14
|
eqtr4di |
|
| 16 |
15
|
eleq2d |
|
| 17 |
16
|
biimpar |
|
| 18 |
|
cnex |
|
| 19 |
|
ssexg |
|
| 20 |
4 18 19
|
sylancl |
|
| 21 |
20
|
adantr |
|
| 22 |
|
cnxmet |
|
| 23 |
|
0cnd |
|
| 24 |
4
|
sselda |
|
| 25 |
24
|
abscld |
|
| 26 |
|
peano2re |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
rexrd |
|
| 29 |
1
|
cnfldtopn |
|
| 30 |
29
|
blopn |
|
| 31 |
22 23 28 30
|
mp3an2i |
|
| 32 |
|
elrestr |
|
| 33 |
11 21 31 32
|
mp3an2i |
|
| 34 |
33 2
|
eleqtrrdi |
|
| 35 |
|
0cn |
|
| 36 |
|
eqid |
|
| 37 |
36
|
cnmetdval |
|
| 38 |
35 37
|
mpan |
|
| 39 |
|
df-neg |
|
| 40 |
39
|
fveq2i |
|
| 41 |
|
absneg |
|
| 42 |
40 41
|
eqtr3id |
|
| 43 |
38 42
|
eqtrd |
|
| 44 |
24 43
|
syl |
|
| 45 |
25
|
ltp1d |
|
| 46 |
44 45
|
eqbrtrd |
|
| 47 |
|
elbl |
|
| 48 |
22 23 28 47
|
mp3an2i |
|
| 49 |
24 46 48
|
mpbir2and |
|
| 50 |
|
simpr |
|
| 51 |
49 50
|
elind |
|
| 52 |
24
|
absge0d |
|
| 53 |
25 52
|
ge0p1rpd |
|
| 54 |
|
eqid |
|
| 55 |
|
oveq2 |
|
| 56 |
55
|
ineq1d |
|
| 57 |
56
|
rspceeqv |
|
| 58 |
53 54 57
|
sylancl |
|
| 59 |
|
eleq2 |
|
| 60 |
|
eqeq1 |
|
| 61 |
60
|
rexbidv |
|
| 62 |
59 61
|
anbi12d |
|
| 63 |
62
|
rspcev |
|
| 64 |
34 51 58 63
|
syl12anc |
|
| 65 |
17 64
|
syldan |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
|
eqid |
|
| 68 |
|
oveq2 |
|
| 69 |
68
|
ineq1d |
|
| 70 |
69
|
eqeq2d |
|
| 71 |
67 70
|
cmpcovf |
|
| 72 |
5 66 71
|
syl2anc |
|
| 73 |
15
|
ad4antr |
|
| 74 |
|
simpllr |
|
| 75 |
73 74
|
eqtrd |
|
| 76 |
75
|
eleq2d |
|
| 77 |
|
eluni2 |
|
| 78 |
76 77
|
bitrdi |
|
| 79 |
|
elssuni |
|
| 80 |
79
|
ad2antrl |
|
| 81 |
75
|
adantr |
|
| 82 |
80 81
|
sseqtrrd |
|
| 83 |
|
simp-6l |
|
| 84 |
82 83
|
sstrd |
|
| 85 |
|
simprr |
|
| 86 |
84 85
|
sseldd |
|
| 87 |
86
|
abscld |
|
| 88 |
|
simplrl |
|
| 89 |
|
simprl |
|
| 90 |
89
|
ad2antrr |
|
| 91 |
|
simprl |
|
| 92 |
90 91
|
ffvelcdmd |
|
| 93 |
92
|
rpred |
|
| 94 |
86 43
|
syl |
|
| 95 |
|
id |
|
| 96 |
|
fveq2 |
|
| 97 |
96
|
oveq2d |
|
| 98 |
97
|
ineq1d |
|
| 99 |
95 98
|
eqeq12d |
|
| 100 |
|
simprr |
|
| 101 |
100
|
ad2antrr |
|
| 102 |
99 101 91
|
rspcdva |
|
| 103 |
85 102
|
eleqtrd |
|
| 104 |
103
|
elin1d |
|
| 105 |
|
0cnd |
|
| 106 |
92
|
rpxrd |
|
| 107 |
|
elbl |
|
| 108 |
22 105 106 107
|
mp3an2i |
|
| 109 |
104 108
|
mpbid |
|
| 110 |
109
|
simprd |
|
| 111 |
94 110
|
eqbrtrrd |
|
| 112 |
96
|
breq1d |
|
| 113 |
|
simplrr |
|
| 114 |
112 113 91
|
rspcdva |
|
| 115 |
87 93 88 111 114
|
ltletrd |
|
| 116 |
87 88 115
|
ltled |
|
| 117 |
116
|
rexlimdvaa |
|
| 118 |
78 117
|
sylbid |
|
| 119 |
118
|
ralrimiv |
|
| 120 |
|
simpllr |
|
| 121 |
120
|
elin2d |
|
| 122 |
|
ffvelcdm |
|
| 123 |
122
|
rpred |
|
| 124 |
123
|
ralrimiva |
|
| 125 |
124
|
ad2antrl |
|
| 126 |
|
fimaxre3 |
|
| 127 |
121 125 126
|
syl2anc |
|
| 128 |
119 127
|
reximddv |
|
| 129 |
128
|
ex |
|
| 130 |
129
|
exlimdv |
|
| 131 |
130
|
expimpd |
|
| 132 |
131
|
rexlimdva |
|
| 133 |
72 132
|
mpd |
|
| 134 |
10 133
|
jca |
|
| 135 |
|
eqid |
|
| 136 |
|
eqid |
|
| 137 |
1 2 135 136
|
cnheiborlem |
|
| 138 |
137
|
rexlimdvaa |
|
| 139 |
138
|
imp |
|
| 140 |
139
|
adantl |
|
| 141 |
134 140
|
impbida |
|