Metamath Proof Explorer


Theorem ftalem2

Description: Lemma for fta . There exists some r such that F has magnitude greater than F ( 0 ) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses ftalem.1 A = coeff F
ftalem.2 N = deg F
ftalem.3 φ F Poly S
ftalem.4 φ N
ftalem2.5 U = if if 1 s s 1 T T if 1 s s 1
ftalem2.6 T = F 0 A N 2
Assertion ftalem2 φ r + x r < x F 0 < F x

Proof

Step Hyp Ref Expression
1 ftalem.1 A = coeff F
2 ftalem.2 N = deg F
3 ftalem.3 φ F Poly S
4 ftalem.4 φ N
5 ftalem2.5 U = if if 1 s s 1 T T if 1 s s 1
6 ftalem2.6 T = F 0 A N 2
7 1 coef3 F Poly S A : 0
8 3 7 syl φ A : 0
9 4 nnnn0d φ N 0
10 8 9 ffvelrnd φ A N
11 4 nnne0d φ N 0
12 2 1 dgreq0 F Poly S F = 0 𝑝 A N = 0
13 fveq2 F = 0 𝑝 deg F = deg 0 𝑝
14 dgr0 deg 0 𝑝 = 0
15 13 14 eqtrdi F = 0 𝑝 deg F = 0
16 2 15 syl5eq F = 0 𝑝 N = 0
17 12 16 syl6bir F Poly S A N = 0 N = 0
18 3 17 syl φ A N = 0 N = 0
19 18 necon3d φ N 0 A N 0
20 11 19 mpd φ A N 0
21 10 20 absrpcld φ A N +
22 21 rphalfcld φ A N 2 +
23 2fveq3 n = k A n = A k
24 23 cbvsumv n = 0 N 1 A n = k = 0 N 1 A k
25 24 oveq1i n = 0 N 1 A n A N 2 = k = 0 N 1 A k A N 2
26 1 2 3 4 22 25 ftalem1 φ s x s < x F x A N x N < A N 2 x N
27 plyf F Poly S F :
28 3 27 syl φ F :
29 0cn 0
30 ffvelrn F : 0 F 0
31 28 29 30 sylancl φ F 0
32 31 abscld φ F 0
33 32 22 rerpdivcld φ F 0 A N 2
34 6 33 eqeltrid φ T
35 34 adantr φ s T
36 simpr φ s s
37 1re 1
38 ifcl s 1 if 1 s s 1
39 36 37 38 sylancl φ s if 1 s s 1
40 35 39 ifcld φ s if if 1 s s 1 T T if 1 s s 1
41 5 40 eqeltrid φ s U
42 0red φ s 0
43 1red φ s 1
44 0lt1 0 < 1
45 44 a1i φ s 0 < 1
46 max1 1 s 1 if 1 s s 1
47 37 36 46 sylancr φ s 1 if 1 s s 1
48 max1 if 1 s s 1 T if 1 s s 1 if if 1 s s 1 T T if 1 s s 1
49 39 35 48 syl2anc φ s if 1 s s 1 if if 1 s s 1 T T if 1 s s 1
50 49 5 breqtrrdi φ s if 1 s s 1 U
51 43 39 41 47 50 letrd φ s 1 U
52 42 43 41 45 51 ltletrd φ s 0 < U
53 41 52 elrpd φ s U +
54 max2 1 s s if 1 s s 1
55 37 36 54 sylancr φ s s if 1 s s 1
56 36 39 41 55 50 letrd φ s s U
57 56 adantr φ s x s U
58 abscl x x
59 lelttr s U x s U U < x s < x
60 36 41 58 59 syl2an3an φ s x s U U < x s < x
61 57 60 mpand φ s x U < x s < x
62 61 imim1d φ s x s < x F x A N x N < A N 2 x N U < x F x A N x N < A N 2 x N
63 28 ad2antrr φ s x U < x F :
64 simprl φ s x U < x x
65 63 64 ffvelrnd φ s x U < x F x
66 10 ad2antrr φ s x U < x A N
67 9 ad2antrr φ s x U < x N 0
68 64 67 expcld φ s x U < x x N
69 66 68 mulcld φ s x U < x A N x N
70 65 69 subcld φ s x U < x F x A N x N
71 70 abscld φ s x U < x F x A N x N
72 69 abscld φ s x U < x A N x N
73 72 rehalfcld φ s x U < x A N x N 2
74 71 73 72 ltsub2d φ s x U < x F x A N x N < A N x N 2 A N x N A N x N 2 < A N x N F x A N x N
75 66 68 absmuld φ s x U < x A N x N = A N x N
76 64 67 absexpd φ s x U < x x N = x N
77 76 oveq2d φ s x U < x A N x N = A N x N
78 75 77 eqtrd φ s x U < x A N x N = A N x N
79 78 oveq1d φ s x U < x A N x N 2 = A N x N 2
80 66 abscld φ s x U < x A N
81 80 recnd φ s x U < x A N
82 58 ad2antrl φ s x U < x x
83 82 67 reexpcld φ s x U < x x N
84 83 recnd φ s x U < x x N
85 2cnd φ s x U < x 2
86 2ne0 2 0
87 86 a1i φ s x U < x 2 0
88 81 84 85 87 div23d φ s x U < x A N x N 2 = A N 2 x N
89 79 88 eqtrd φ s x U < x A N x N 2 = A N 2 x N
90 89 breq2d φ s x U < x F x A N x N < A N x N 2 F x A N x N < A N 2 x N
91 72 recnd φ s x U < x A N x N
92 91 2halvesd φ s x U < x A N x N 2 + A N x N 2 = A N x N
93 92 oveq1d φ s x U < x A N x N 2 + A N x N 2 - A N x N 2 = A N x N A N x N 2
94 73 recnd φ s x U < x A N x N 2
95 94 94 pncand φ s x U < x A N x N 2 + A N x N 2 - A N x N 2 = A N x N 2
96 93 95 eqtr3d φ s x U < x A N x N A N x N 2 = A N x N 2
97 96 breq1d φ s x U < x A N x N A N x N 2 < A N x N F x A N x N A N x N 2 < A N x N F x A N x N
98 74 90 97 3bitr3d φ s x U < x F x A N x N < A N 2 x N A N x N 2 < A N x N F x A N x N
99 69 65 subcld φ s x U < x A N x N F x
100 69 99 abs2difd φ s x U < x A N x N A N x N F x A N x N A N x N F x
101 69 65 abssubd φ s x U < x A N x N F x = F x A N x N
102 101 oveq2d φ s x U < x A N x N A N x N F x = A N x N F x A N x N
103 69 65 nncand φ s x U < x A N x N A N x N F x = F x
104 103 fveq2d φ s x U < x A N x N A N x N F x = F x
105 100 102 104 3brtr3d φ s x U < x A N x N F x A N x N F x
106 72 71 resubcld φ s x U < x A N x N F x A N x N
107 65 abscld φ s x U < x F x
108 ltletr A N x N 2 A N x N F x A N x N F x A N x N 2 < A N x N F x A N x N A N x N F x A N x N F x A N x N 2 < F x
109 73 106 107 108 syl3anc φ s x U < x A N x N 2 < A N x N F x A N x N A N x N F x A N x N F x A N x N 2 < F x
110 105 109 mpan2d φ s x U < x A N x N 2 < A N x N F x A N x N A N x N 2 < F x
111 98 110 sylbid φ s x U < x F x A N x N < A N 2 x N A N x N 2 < F x
112 32 ad2antrr φ s x U < x F 0
113 22 ad2antrr φ s x U < x A N 2 +
114 113 rpred φ s x U < x A N 2
115 114 82 remulcld φ s x U < x A N 2 x
116 89 73 eqeltrrd φ s x U < x A N 2 x N
117 35 adantr φ s x U < x T
118 41 adantr φ s x U < x U
119 max2 if 1 s s 1 T T if if 1 s s 1 T T if 1 s s 1
120 39 35 119 syl2anc φ s T if if 1 s s 1 T T if 1 s s 1
121 120 5 breqtrrdi φ s T U
122 121 adantr φ s x U < x T U
123 simprr φ s x U < x U < x
124 117 118 82 122 123 lelttrd φ s x U < x T < x
125 6 124 eqbrtrrid φ s x U < x F 0 A N 2 < x
126 112 82 113 ltdivmuld φ s x U < x F 0 A N 2 < x F 0 < A N 2 x
127 125 126 mpbid φ s x U < x F 0 < A N 2 x
128 82 recnd φ s x U < x x
129 128 exp1d φ s x U < x x 1 = x
130 1red φ s x U < x 1
131 51 adantr φ s x U < x 1 U
132 130 118 82 131 123 lelttrd φ s x U < x 1 < x
133 130 82 132 ltled φ s x U < x 1 x
134 4 ad2antrr φ s x U < x N
135 nnuz = 1
136 134 135 eleqtrdi φ s x U < x N 1
137 82 133 136 leexp2ad φ s x U < x x 1 x N
138 129 137 eqbrtrrd φ s x U < x x x N
139 82 83 113 lemul2d φ s x U < x x x N A N 2 x A N 2 x N
140 138 139 mpbid φ s x U < x A N 2 x A N 2 x N
141 112 115 116 127 140 ltletrd φ s x U < x F 0 < A N 2 x N
142 141 89 breqtrrd φ s x U < x F 0 < A N x N 2
143 lttr F 0 A N x N 2 F x F 0 < A N x N 2 A N x N 2 < F x F 0 < F x
144 112 73 107 143 syl3anc φ s x U < x F 0 < A N x N 2 A N x N 2 < F x F 0 < F x
145 142 144 mpand φ s x U < x A N x N 2 < F x F 0 < F x
146 111 145 syld φ s x U < x F x A N x N < A N 2 x N F 0 < F x
147 146 expr φ s x U < x F x A N x N < A N 2 x N F 0 < F x
148 147 a2d φ s x U < x F x A N x N < A N 2 x N U < x F 0 < F x
149 62 148 syld φ s x s < x F x A N x N < A N 2 x N U < x F 0 < F x
150 149 ralimdva φ s x s < x F x A N x N < A N 2 x N x U < x F 0 < F x
151 breq1 r = U r < x U < x
152 151 rspceaimv U + x U < x F 0 < F x r + x r < x F 0 < F x
153 53 150 152 syl6an φ s x s < x F x A N x N < A N 2 x N r + x r < x F 0 < F x
154 153 rexlimdva φ s x s < x F x A N x N < A N 2 x N r + x r < x F 0 < F x
155 26 154 mpd φ r + x r < x F 0 < F x