| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6lem4.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c6lem4.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c6lem4.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c6lem4.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c6lem4.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c6lem4.6 |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | aks6d1c6lem4.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c6lem4.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c6lem4.9 |  |-  ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) | 
						
							| 10 |  | aks6d1c6lem4.10 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6lem4.11 |  |-  A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 12 |  | aksaks6dlem4.12 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 13 |  | aks6d1c6lem4.13 |  |-  L = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 14 |  | aks6d1c6lem4.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 15 |  | aks6d1c6lem4.15 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 16 |  | aks6d1c6lem4.16 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 17 |  | aks6d1c6lem4.17 |  |-  H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) | 
						
							| 18 |  | aks6d1c6lem4.18 |  |-  D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6lem4.19 |  |-  S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } | 
						
							| 20 |  | aks6d1c6lem4.20 |  |-  J = ( j e. ZZ |-> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 21 |  | aks6d1c6lem4.21 |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 22 |  | aks6d1c6lem4.22 |  |-  U = { m e. ( Base ` ( mulGrp ` K ) ) | E. n e. ( Base ` ( mulGrp ` K ) ) ( n ( +g ` ( mulGrp ` K ) ) m ) = ( 0g ` ( mulGrp ` K ) ) } | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ A < P ) -> A < P ) | 
						
							| 24 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 25 | 4 24 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 26 | 25 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 27 | 5 | phicld |  |-  ( ph -> ( phi ` R ) e. NN ) | 
						
							| 28 | 27 | nnred |  |-  ( ph -> ( phi ` R ) e. RR ) | 
						
							| 29 | 27 | nnnn0d |  |-  ( ph -> ( phi ` R ) e. NN0 ) | 
						
							| 30 | 29 | nn0ge0d |  |-  ( ph -> 0 <_ ( phi ` R ) ) | 
						
							| 31 | 28 30 | resqrtcld |  |-  ( ph -> ( sqrt ` ( phi ` R ) ) e. RR ) | 
						
							| 32 |  | 2re |  |-  2 e. RR | 
						
							| 33 | 32 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 34 |  | 2pos |  |-  0 < 2 | 
						
							| 35 | 34 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 36 | 6 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 37 | 6 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 38 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 39 |  | 1lt2 |  |-  1 < 2 | 
						
							| 40 | 39 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 41 | 38 40 | ltned |  |-  ( ph -> 1 =/= 2 ) | 
						
							| 42 | 41 | necomd |  |-  ( ph -> 2 =/= 1 ) | 
						
							| 43 | 33 35 36 37 42 | relogbcld |  |-  ( ph -> ( 2 logb N ) e. RR ) | 
						
							| 44 | 31 43 | remulcld |  |-  ( ph -> ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR ) | 
						
							| 45 | 44 | flcld |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ ) | 
						
							| 46 | 28 30 | sqrtge0d |  |-  ( ph -> 0 <_ ( sqrt ` ( phi ` R ) ) ) | 
						
							| 47 | 33 | recnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 48 | 35 | gt0ne0d |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 49 |  | logb1 |  |-  ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) | 
						
							| 50 | 47 48 42 49 | syl3anc |  |-  ( ph -> ( 2 logb 1 ) = 0 ) | 
						
							| 51 | 50 | eqcomd |  |-  ( ph -> 0 = ( 2 logb 1 ) ) | 
						
							| 52 |  | 2z |  |-  2 e. ZZ | 
						
							| 53 | 52 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 54 | 33 | leidd |  |-  ( ph -> 2 <_ 2 ) | 
						
							| 55 |  | 0lt1 |  |-  0 < 1 | 
						
							| 56 | 55 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 57 | 6 | nnge1d |  |-  ( ph -> 1 <_ N ) | 
						
							| 58 | 53 54 38 56 36 37 57 | logblebd |  |-  ( ph -> ( 2 logb 1 ) <_ ( 2 logb N ) ) | 
						
							| 59 | 51 58 | eqbrtrd |  |-  ( ph -> 0 <_ ( 2 logb N ) ) | 
						
							| 60 | 31 43 46 59 | mulge0d |  |-  ( ph -> 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) | 
						
							| 61 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 62 |  | flge |  |-  ( ( ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 63 | 44 61 62 | syl2anc |  |-  ( ph -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 64 | 60 63 | mpbid |  |-  ( ph -> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) | 
						
							| 65 | 45 64 | jca |  |-  ( ph -> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 66 |  | elnn0z |  |-  ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 <-> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) | 
						
							| 67 | 65 66 | sylibr |  |-  ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 ) | 
						
							| 68 | 11 67 | eqeltrid |  |-  ( ph -> A e. NN0 ) | 
						
							| 69 | 68 | nn0red |  |-  ( ph -> A e. RR ) | 
						
							| 70 | 26 69 | lenltd |  |-  ( ph -> ( P <_ A <-> -. A < P ) ) | 
						
							| 71 | 70 | biimpar |  |-  ( ( ph /\ -. A < P ) -> P <_ A ) | 
						
							| 72 |  | oveq1 |  |-  ( b = P -> ( b gcd N ) = ( P gcd N ) ) | 
						
							| 73 | 72 | eqeq1d |  |-  ( b = P -> ( ( b gcd N ) = 1 <-> ( P gcd N ) = 1 ) ) | 
						
							| 74 | 9 | adantr |  |-  ( ( ph /\ P <_ A ) -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) | 
						
							| 75 |  | 1zzd |  |-  ( ( ph /\ P <_ A ) -> 1 e. ZZ ) | 
						
							| 76 | 11 45 | eqeltrid |  |-  ( ph -> A e. ZZ ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ph /\ P <_ A ) -> A e. ZZ ) | 
						
							| 78 | 25 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ph /\ P <_ A ) -> P e. ZZ ) | 
						
							| 80 | 25 | nnge1d |  |-  ( ph -> 1 <_ P ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ph /\ P <_ A ) -> 1 <_ P ) | 
						
							| 82 |  | simpr |  |-  ( ( ph /\ P <_ A ) -> P <_ A ) | 
						
							| 83 | 75 77 79 81 82 | elfzd |  |-  ( ( ph /\ P <_ A ) -> P e. ( 1 ... A ) ) | 
						
							| 84 | 73 74 83 | rspcdva |  |-  ( ( ph /\ P <_ A ) -> ( P gcd N ) = 1 ) | 
						
							| 85 | 84 | ex |  |-  ( ph -> ( P <_ A -> ( P gcd N ) = 1 ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ph /\ -. A < P ) -> ( P <_ A -> ( P gcd N ) = 1 ) ) | 
						
							| 87 | 71 86 | mpd |  |-  ( ( ph /\ -. A < P ) -> ( P gcd N ) = 1 ) | 
						
							| 88 | 6 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 89 |  | coprm |  |-  ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N <-> ( P gcd N ) = 1 ) ) | 
						
							| 90 | 4 88 89 | syl2anc |  |-  ( ph -> ( -. P || N <-> ( P gcd N ) = 1 ) ) | 
						
							| 91 | 90 | con1bid |  |-  ( ph -> ( -. ( P gcd N ) = 1 <-> P || N ) ) | 
						
							| 92 | 91 | bicomd |  |-  ( ph -> ( P || N <-> -. ( P gcd N ) = 1 ) ) | 
						
							| 93 | 92 | biimpd |  |-  ( ph -> ( P || N -> -. ( P gcd N ) = 1 ) ) | 
						
							| 94 | 7 93 | mpd |  |-  ( ph -> -. ( P gcd N ) = 1 ) | 
						
							| 95 | 94 | neqned |  |-  ( ph -> ( P gcd N ) =/= 1 ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ -. A < P ) -> ( P gcd N ) =/= 1 ) | 
						
							| 97 | 96 | neneqd |  |-  ( ( ph /\ -. A < P ) -> -. ( P gcd N ) = 1 ) | 
						
							| 98 | 87 97 | pm2.21dd |  |-  ( ( ph /\ -. A < P ) -> A < P ) | 
						
							| 99 | 23 98 | pm2.61dan |  |-  ( ph -> A < P ) | 
						
							| 100 |  | eqid |  |-  ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 101 |  | imaco |  |-  ( ( J o. E ) " ( NN0 X. NN0 ) ) = ( J " ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 102 | 101 | eqcomi |  |-  ( J " ( E " ( NN0 X. NN0 ) ) ) = ( ( J o. E ) " ( NN0 X. NN0 ) ) | 
						
							| 103 |  | resima |  |-  ( ( ( J o. E ) |` ( NN0 X. NN0 ) ) " ( NN0 X. NN0 ) ) = ( ( J o. E ) " ( NN0 X. NN0 ) ) | 
						
							| 104 | 103 | eqcomi |  |-  ( ( J o. E ) " ( NN0 X. NN0 ) ) = ( ( ( J o. E ) |` ( NN0 X. NN0 ) ) " ( NN0 X. NN0 ) ) | 
						
							| 105 | 104 | a1i |  |-  ( ph -> ( ( J o. E ) " ( NN0 X. NN0 ) ) = ( ( ( J o. E ) |` ( NN0 X. NN0 ) ) " ( NN0 X. NN0 ) ) ) | 
						
							| 106 | 78 | adantr |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> P e. ZZ ) | 
						
							| 107 |  | xp1st |  |-  ( v e. ( NN0 X. NN0 ) -> ( 1st ` v ) e. NN0 ) | 
						
							| 108 | 107 | adantl |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( 1st ` v ) e. NN0 ) | 
						
							| 109 | 106 108 | zexpcld |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( P ^ ( 1st ` v ) ) e. ZZ ) | 
						
							| 110 | 25 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 111 |  | dvdsval2 |  |-  ( ( P e. ZZ /\ P =/= 0 /\ N e. ZZ ) -> ( P || N <-> ( N / P ) e. ZZ ) ) | 
						
							| 112 | 78 110 88 111 | syl3anc |  |-  ( ph -> ( P || N <-> ( N / P ) e. ZZ ) ) | 
						
							| 113 | 7 112 | mpbid |  |-  ( ph -> ( N / P ) e. ZZ ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( N / P ) e. ZZ ) | 
						
							| 115 |  | xp2nd |  |-  ( v e. ( NN0 X. NN0 ) -> ( 2nd ` v ) e. NN0 ) | 
						
							| 116 | 115 | adantl |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( 2nd ` v ) e. NN0 ) | 
						
							| 117 | 114 116 | zexpcld |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( ( N / P ) ^ ( 2nd ` v ) ) e. ZZ ) | 
						
							| 118 | 109 117 | zmulcld |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) e. ZZ ) | 
						
							| 119 |  | vex |  |-  k e. _V | 
						
							| 120 |  | vex |  |-  l e. _V | 
						
							| 121 | 119 120 | op1std |  |-  ( v = <. k , l >. -> ( 1st ` v ) = k ) | 
						
							| 122 | 121 | oveq2d |  |-  ( v = <. k , l >. -> ( P ^ ( 1st ` v ) ) = ( P ^ k ) ) | 
						
							| 123 | 119 120 | op2ndd |  |-  ( v = <. k , l >. -> ( 2nd ` v ) = l ) | 
						
							| 124 | 123 | oveq2d |  |-  ( v = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` v ) ) = ( ( N / P ) ^ l ) ) | 
						
							| 125 | 122 124 | oveq12d |  |-  ( v = <. k , l >. -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 126 | 125 | mpompt |  |-  ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 127 | 12 126 | eqtr4i |  |-  E = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) | 
						
							| 128 | 127 | a1i |  |-  ( ph -> E = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) ) | 
						
							| 129 | 20 | a1i |  |-  ( ph -> J = ( j e. ZZ |-> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 130 |  | oveq1 |  |-  ( j = ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) -> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 131 | 118 128 129 130 | fmptco |  |-  ( ph -> ( J o. E ) = ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 132 | 131 | reseq1d |  |-  ( ph -> ( ( J o. E ) |` ( NN0 X. NN0 ) ) = ( ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |` ( NN0 X. NN0 ) ) ) | 
						
							| 133 |  | ssidd |  |-  ( ph -> ( NN0 X. NN0 ) C_ ( NN0 X. NN0 ) ) | 
						
							| 134 | 133 | resmptd |  |-  ( ph -> ( ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |` ( NN0 X. NN0 ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 135 | 128 118 | fvmpt2d |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( E ` v ) = ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) | 
						
							| 136 | 135 | oveq1d |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 137 | 136 | mpteq2dva |  |-  ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 138 | 137 | eqcomd |  |-  ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 139 |  | ovexd |  |-  ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) e. _V ) | 
						
							| 140 |  | eqid |  |-  ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 141 | 139 140 | fmptd |  |-  ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) : ( NN0 X. NN0 ) --> _V ) | 
						
							| 142 |  | ffn |  |-  ( ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) : ( NN0 X. NN0 ) --> _V -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) Fn ( NN0 X. NN0 ) ) | 
						
							| 143 | 141 142 | syl |  |-  ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) Fn ( NN0 X. NN0 ) ) | 
						
							| 144 |  | ovexd |  |-  ( ( ph /\ j e. ( NN0 X. NN0 ) ) -> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) e. _V ) | 
						
							| 145 | 144 100 | fmptd |  |-  ( ph -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) : ( NN0 X. NN0 ) --> _V ) | 
						
							| 146 |  | ffn |  |-  ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) : ( NN0 X. NN0 ) --> _V -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) Fn ( NN0 X. NN0 ) ) | 
						
							| 147 | 145 146 | syl |  |-  ( ph -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) Fn ( NN0 X. NN0 ) ) | 
						
							| 148 |  | eqidd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) | 
						
							| 149 |  | simpr |  |-  ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ v = c ) -> v = c ) | 
						
							| 150 | 149 | fveq2d |  |-  ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ v = c ) -> ( E ` v ) = ( E ` c ) ) | 
						
							| 151 | 150 | oveq1d |  |-  ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ v = c ) -> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( E ` c ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 152 |  | simpr |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> c e. ( NN0 X. NN0 ) ) | 
						
							| 153 |  | ovexd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( E ` c ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) e. _V ) | 
						
							| 154 | 148 151 152 153 | fvmptd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ` c ) = ( ( E ` c ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) | 
						
							| 155 |  | eqid |  |-  ( ( mulGrp ` K ) |`s U ) = ( ( mulGrp ` K ) |`s U ) | 
						
							| 156 | 22 | ssrab3 |  |-  U C_ ( Base ` ( mulGrp ` K ) ) | 
						
							| 157 | 156 | a1i |  |-  ( ph -> U C_ ( Base ` ( mulGrp ` K ) ) ) | 
						
							| 158 | 157 | adantr |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> U C_ ( Base ` ( mulGrp ` K ) ) ) | 
						
							| 159 | 3 | fldcrngd |  |-  ( ph -> K e. CRing ) | 
						
							| 160 |  | eqid |  |-  ( mulGrp ` K ) = ( mulGrp ` K ) | 
						
							| 161 | 160 | crngmgp |  |-  ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) | 
						
							| 162 | 159 161 | syl |  |-  ( ph -> ( mulGrp ` K ) e. CMnd ) | 
						
							| 163 | 162 5 22 | primrootsunit |  |-  ( ph -> ( ( ( mulGrp ` K ) PrimRoots R ) = ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) /\ ( ( mulGrp ` K ) |`s U ) e. Abel ) ) | 
						
							| 164 | 163 | simpld |  |-  ( ph -> ( ( mulGrp ` K ) PrimRoots R ) = ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) ) | 
						
							| 165 | 16 164 | eleqtrd |  |-  ( ph -> M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) ) | 
						
							| 166 | 163 | simprd |  |-  ( ph -> ( ( mulGrp ` K ) |`s U ) e. Abel ) | 
						
							| 167 |  | ablcmn |  |-  ( ( ( mulGrp ` K ) |`s U ) e. Abel -> ( ( mulGrp ` K ) |`s U ) e. CMnd ) | 
						
							| 168 | 166 167 | syl |  |-  ( ph -> ( ( mulGrp ` K ) |`s U ) e. CMnd ) | 
						
							| 169 | 5 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 170 |  | eqid |  |-  ( .g ` ( ( mulGrp ` K ) |`s U ) ) = ( .g ` ( ( mulGrp ` K ) |`s U ) ) | 
						
							| 171 | 168 169 170 | isprimroot |  |-  ( ph -> ( M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) <-> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. w e. NN0 ( ( w ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || w ) ) ) ) | 
						
							| 172 | 171 | biimpd |  |-  ( ph -> ( M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) -> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. w e. NN0 ( ( w ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || w ) ) ) ) | 
						
							| 173 | 165 172 | mpd |  |-  ( ph -> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. w e. NN0 ( ( w ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || w ) ) ) | 
						
							| 174 | 173 | simp1d |  |-  ( ph -> M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 175 |  | eqid |  |-  ( Base ` ( mulGrp ` K ) ) = ( Base ` ( mulGrp ` K ) ) | 
						
							| 176 | 155 175 | ressbas2 |  |-  ( U C_ ( Base ` ( mulGrp ` K ) ) -> U = ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 177 | 157 176 | syl |  |-  ( ph -> U = ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) | 
						
							| 178 | 174 177 | eleqtrrd |  |-  ( ph -> M e. U ) | 
						
							| 179 | 178 | adantr |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> M e. U ) | 
						
							| 180 | 6 4 7 12 | aks6d1c2p1 |  |-  ( ph -> E : ( NN0 X. NN0 ) --> NN ) | 
						
							| 181 | 180 | ffvelcdmda |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( E ` c ) e. NN ) | 
						
							| 182 | 155 158 179 181 | ressmulgnnd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( E ` c ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 183 |  | eqidd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 184 |  | simpr |  |-  ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ j = c ) -> j = c ) | 
						
							| 185 | 184 | fveq2d |  |-  ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ j = c ) -> ( E ` j ) = ( E ` c ) ) | 
						
							| 186 | 185 | oveq1d |  |-  ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ j = c ) -> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 187 |  | ovexd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) e. _V ) | 
						
							| 188 | 183 186 152 187 | fvmptd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ` c ) = ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 189 | 188 | eqcomd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ` c ) ) | 
						
							| 190 | 154 182 189 | 3eqtrd |  |-  ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ` c ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ` c ) ) | 
						
							| 191 | 143 147 190 | eqfnfvd |  |-  ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 192 | 138 191 | eqtrd |  |-  ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 193 | 134 192 | eqtrd |  |-  ( ph -> ( ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |` ( NN0 X. NN0 ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 194 | 132 193 | eqtrd |  |-  ( ph -> ( ( J o. E ) |` ( NN0 X. NN0 ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 195 | 194 | imaeq1d |  |-  ( ph -> ( ( ( J o. E ) |` ( NN0 X. NN0 ) ) " ( NN0 X. NN0 ) ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) | 
						
							| 196 | 105 195 | eqtrd |  |-  ( ph -> ( ( J o. E ) " ( NN0 X. NN0 ) ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) | 
						
							| 197 | 102 196 | eqtrid |  |-  ( ph -> ( J " ( E " ( NN0 X. NN0 ) ) ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) | 
						
							| 198 | 197 | fveq2d |  |-  ( ph -> ( # ` ( J " ( E " ( NN0 X. NN0 ) ) ) ) = ( # ` ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) ) | 
						
							| 199 | 21 198 | breqtrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) ) | 
						
							| 200 | 1 2 3 4 5 6 7 8 99 10 68 12 13 14 15 16 17 18 19 100 199 | aks6d1c6lem3 |  |-  ( ph -> ( ( D + A ) _C ( D - 1 ) ) <_ ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) ) |