Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6lem4.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
2 |
|
aks6d1c6lem4.2 |
|- P = ( chr ` K ) |
3 |
|
aks6d1c6lem4.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks6d1c6lem4.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks6d1c6lem4.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks6d1c6lem4.6 |
|- ( ph -> N e. NN ) |
7 |
|
aks6d1c6lem4.7 |
|- ( ph -> P || N ) |
8 |
|
aks6d1c6lem4.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks6d1c6lem4.9 |
|- ( ph -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
10 |
|
aks6d1c6lem4.10 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
11 |
|
aks6d1c6lem4.11 |
|- A = ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
12 |
|
aksaks6dlem4.12 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
13 |
|
aks6d1c6lem4.13 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
14 |
|
aks6d1c6lem4.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
15 |
|
aks6d1c6lem4.15 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
16 |
|
aks6d1c6lem4.16 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
17 |
|
aks6d1c6lem4.17 |
|- H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |
18 |
|
aks6d1c6lem4.18 |
|- D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
19 |
|
aks6d1c6lem4.19 |
|- S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } |
20 |
|
aks6d1c6lem4.20 |
|- J = ( j e. ZZ |-> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |
21 |
|
aks6d1c6lem4.21 |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( J " ( E " ( NN0 X. NN0 ) ) ) ) ) |
22 |
|
aks6d1c6lem4.22 |
|- U = { m e. ( Base ` ( mulGrp ` K ) ) | E. n e. ( Base ` ( mulGrp ` K ) ) ( n ( +g ` ( mulGrp ` K ) ) m ) = ( 0g ` ( mulGrp ` K ) ) } |
23 |
|
simpr |
|- ( ( ph /\ A < P ) -> A < P ) |
24 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
25 |
4 24
|
syl |
|- ( ph -> P e. NN ) |
26 |
25
|
nnred |
|- ( ph -> P e. RR ) |
27 |
5
|
phicld |
|- ( ph -> ( phi ` R ) e. NN ) |
28 |
27
|
nnred |
|- ( ph -> ( phi ` R ) e. RR ) |
29 |
27
|
nnnn0d |
|- ( ph -> ( phi ` R ) e. NN0 ) |
30 |
29
|
nn0ge0d |
|- ( ph -> 0 <_ ( phi ` R ) ) |
31 |
28 30
|
resqrtcld |
|- ( ph -> ( sqrt ` ( phi ` R ) ) e. RR ) |
32 |
|
2re |
|- 2 e. RR |
33 |
32
|
a1i |
|- ( ph -> 2 e. RR ) |
34 |
|
2pos |
|- 0 < 2 |
35 |
34
|
a1i |
|- ( ph -> 0 < 2 ) |
36 |
6
|
nnred |
|- ( ph -> N e. RR ) |
37 |
6
|
nngt0d |
|- ( ph -> 0 < N ) |
38 |
|
1red |
|- ( ph -> 1 e. RR ) |
39 |
|
1lt2 |
|- 1 < 2 |
40 |
39
|
a1i |
|- ( ph -> 1 < 2 ) |
41 |
38 40
|
ltned |
|- ( ph -> 1 =/= 2 ) |
42 |
41
|
necomd |
|- ( ph -> 2 =/= 1 ) |
43 |
33 35 36 37 42
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
44 |
31 43
|
remulcld |
|- ( ph -> ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR ) |
45 |
44
|
flcld |
|- ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ ) |
46 |
28 30
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( phi ` R ) ) ) |
47 |
33
|
recnd |
|- ( ph -> 2 e. CC ) |
48 |
35
|
gt0ne0d |
|- ( ph -> 2 =/= 0 ) |
49 |
|
logb1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) |
50 |
47 48 42 49
|
syl3anc |
|- ( ph -> ( 2 logb 1 ) = 0 ) |
51 |
50
|
eqcomd |
|- ( ph -> 0 = ( 2 logb 1 ) ) |
52 |
|
2z |
|- 2 e. ZZ |
53 |
52
|
a1i |
|- ( ph -> 2 e. ZZ ) |
54 |
33
|
leidd |
|- ( ph -> 2 <_ 2 ) |
55 |
|
0lt1 |
|- 0 < 1 |
56 |
55
|
a1i |
|- ( ph -> 0 < 1 ) |
57 |
6
|
nnge1d |
|- ( ph -> 1 <_ N ) |
58 |
53 54 38 56 36 37 57
|
logblebd |
|- ( ph -> ( 2 logb 1 ) <_ ( 2 logb N ) ) |
59 |
51 58
|
eqbrtrd |
|- ( ph -> 0 <_ ( 2 logb N ) ) |
60 |
31 43 46 59
|
mulge0d |
|- ( ph -> 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) |
61 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
62 |
|
flge |
|- ( ( ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
63 |
44 61 62
|
syl2anc |
|- ( ph -> ( 0 <_ ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) <-> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
64 |
60 63
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) |
65 |
45 64
|
jca |
|- ( ph -> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
66 |
|
elnn0z |
|- ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 <-> ( ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) ) ) |
67 |
65 66
|
sylibr |
|- ( ph -> ( |_ ` ( ( sqrt ` ( phi ` R ) ) x. ( 2 logb N ) ) ) e. NN0 ) |
68 |
11 67
|
eqeltrid |
|- ( ph -> A e. NN0 ) |
69 |
68
|
nn0red |
|- ( ph -> A e. RR ) |
70 |
26 69
|
lenltd |
|- ( ph -> ( P <_ A <-> -. A < P ) ) |
71 |
70
|
biimpar |
|- ( ( ph /\ -. A < P ) -> P <_ A ) |
72 |
|
oveq1 |
|- ( b = P -> ( b gcd N ) = ( P gcd N ) ) |
73 |
72
|
eqeq1d |
|- ( b = P -> ( ( b gcd N ) = 1 <-> ( P gcd N ) = 1 ) ) |
74 |
9
|
adantr |
|- ( ( ph /\ P <_ A ) -> A. b e. ( 1 ... A ) ( b gcd N ) = 1 ) |
75 |
|
1zzd |
|- ( ( ph /\ P <_ A ) -> 1 e. ZZ ) |
76 |
11 45
|
eqeltrid |
|- ( ph -> A e. ZZ ) |
77 |
76
|
adantr |
|- ( ( ph /\ P <_ A ) -> A e. ZZ ) |
78 |
25
|
nnzd |
|- ( ph -> P e. ZZ ) |
79 |
78
|
adantr |
|- ( ( ph /\ P <_ A ) -> P e. ZZ ) |
80 |
25
|
nnge1d |
|- ( ph -> 1 <_ P ) |
81 |
80
|
adantr |
|- ( ( ph /\ P <_ A ) -> 1 <_ P ) |
82 |
|
simpr |
|- ( ( ph /\ P <_ A ) -> P <_ A ) |
83 |
75 77 79 81 82
|
elfzd |
|- ( ( ph /\ P <_ A ) -> P e. ( 1 ... A ) ) |
84 |
73 74 83
|
rspcdva |
|- ( ( ph /\ P <_ A ) -> ( P gcd N ) = 1 ) |
85 |
84
|
ex |
|- ( ph -> ( P <_ A -> ( P gcd N ) = 1 ) ) |
86 |
85
|
adantr |
|- ( ( ph /\ -. A < P ) -> ( P <_ A -> ( P gcd N ) = 1 ) ) |
87 |
71 86
|
mpd |
|- ( ( ph /\ -. A < P ) -> ( P gcd N ) = 1 ) |
88 |
6
|
nnzd |
|- ( ph -> N e. ZZ ) |
89 |
|
coprm |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N <-> ( P gcd N ) = 1 ) ) |
90 |
4 88 89
|
syl2anc |
|- ( ph -> ( -. P || N <-> ( P gcd N ) = 1 ) ) |
91 |
90
|
con1bid |
|- ( ph -> ( -. ( P gcd N ) = 1 <-> P || N ) ) |
92 |
91
|
bicomd |
|- ( ph -> ( P || N <-> -. ( P gcd N ) = 1 ) ) |
93 |
92
|
biimpd |
|- ( ph -> ( P || N -> -. ( P gcd N ) = 1 ) ) |
94 |
7 93
|
mpd |
|- ( ph -> -. ( P gcd N ) = 1 ) |
95 |
94
|
neqned |
|- ( ph -> ( P gcd N ) =/= 1 ) |
96 |
95
|
adantr |
|- ( ( ph /\ -. A < P ) -> ( P gcd N ) =/= 1 ) |
97 |
96
|
neneqd |
|- ( ( ph /\ -. A < P ) -> -. ( P gcd N ) = 1 ) |
98 |
87 97
|
pm2.21dd |
|- ( ( ph /\ -. A < P ) -> A < P ) |
99 |
23 98
|
pm2.61dan |
|- ( ph -> A < P ) |
100 |
|
eqid |
|- ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) |
101 |
|
imaco |
|- ( ( J o. E ) " ( NN0 X. NN0 ) ) = ( J " ( E " ( NN0 X. NN0 ) ) ) |
102 |
101
|
eqcomi |
|- ( J " ( E " ( NN0 X. NN0 ) ) ) = ( ( J o. E ) " ( NN0 X. NN0 ) ) |
103 |
|
resima |
|- ( ( ( J o. E ) |` ( NN0 X. NN0 ) ) " ( NN0 X. NN0 ) ) = ( ( J o. E ) " ( NN0 X. NN0 ) ) |
104 |
103
|
eqcomi |
|- ( ( J o. E ) " ( NN0 X. NN0 ) ) = ( ( ( J o. E ) |` ( NN0 X. NN0 ) ) " ( NN0 X. NN0 ) ) |
105 |
104
|
a1i |
|- ( ph -> ( ( J o. E ) " ( NN0 X. NN0 ) ) = ( ( ( J o. E ) |` ( NN0 X. NN0 ) ) " ( NN0 X. NN0 ) ) ) |
106 |
78
|
adantr |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> P e. ZZ ) |
107 |
|
xp1st |
|- ( v e. ( NN0 X. NN0 ) -> ( 1st ` v ) e. NN0 ) |
108 |
107
|
adantl |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( 1st ` v ) e. NN0 ) |
109 |
106 108
|
zexpcld |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( P ^ ( 1st ` v ) ) e. ZZ ) |
110 |
25
|
nnne0d |
|- ( ph -> P =/= 0 ) |
111 |
|
dvdsval2 |
|- ( ( P e. ZZ /\ P =/= 0 /\ N e. ZZ ) -> ( P || N <-> ( N / P ) e. ZZ ) ) |
112 |
78 110 88 111
|
syl3anc |
|- ( ph -> ( P || N <-> ( N / P ) e. ZZ ) ) |
113 |
7 112
|
mpbid |
|- ( ph -> ( N / P ) e. ZZ ) |
114 |
113
|
adantr |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( N / P ) e. ZZ ) |
115 |
|
xp2nd |
|- ( v e. ( NN0 X. NN0 ) -> ( 2nd ` v ) e. NN0 ) |
116 |
115
|
adantl |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( 2nd ` v ) e. NN0 ) |
117 |
114 116
|
zexpcld |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( ( N / P ) ^ ( 2nd ` v ) ) e. ZZ ) |
118 |
109 117
|
zmulcld |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) e. ZZ ) |
119 |
|
vex |
|- k e. _V |
120 |
|
vex |
|- l e. _V |
121 |
119 120
|
op1std |
|- ( v = <. k , l >. -> ( 1st ` v ) = k ) |
122 |
121
|
oveq2d |
|- ( v = <. k , l >. -> ( P ^ ( 1st ` v ) ) = ( P ^ k ) ) |
123 |
119 120
|
op2ndd |
|- ( v = <. k , l >. -> ( 2nd ` v ) = l ) |
124 |
123
|
oveq2d |
|- ( v = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` v ) ) = ( ( N / P ) ^ l ) ) |
125 |
122 124
|
oveq12d |
|- ( v = <. k , l >. -> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
126 |
125
|
mpompt |
|- ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
127 |
12 126
|
eqtr4i |
|- E = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) |
128 |
127
|
a1i |
|- ( ph -> E = ( v e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) ) |
129 |
20
|
a1i |
|- ( ph -> J = ( j e. ZZ |-> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) |
130 |
|
oveq1 |
|- ( j = ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) -> ( j ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |
131 |
118 128 129 130
|
fmptco |
|- ( ph -> ( J o. E ) = ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) |
132 |
131
|
reseq1d |
|- ( ph -> ( ( J o. E ) |` ( NN0 X. NN0 ) ) = ( ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |` ( NN0 X. NN0 ) ) ) |
133 |
|
ssidd |
|- ( ph -> ( NN0 X. NN0 ) C_ ( NN0 X. NN0 ) ) |
134 |
133
|
resmptd |
|- ( ph -> ( ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |` ( NN0 X. NN0 ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) |
135 |
128 118
|
fvmpt2d |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( E ` v ) = ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ) |
136 |
135
|
oveq1d |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |
137 |
136
|
mpteq2dva |
|- ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) |
138 |
137
|
eqcomd |
|- ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) |
139 |
|
ovexd |
|- ( ( ph /\ v e. ( NN0 X. NN0 ) ) -> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) e. _V ) |
140 |
|
eqid |
|- ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |
141 |
139 140
|
fmptd |
|- ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) : ( NN0 X. NN0 ) --> _V ) |
142 |
|
ffn |
|- ( ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) : ( NN0 X. NN0 ) --> _V -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) Fn ( NN0 X. NN0 ) ) |
143 |
141 142
|
syl |
|- ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) Fn ( NN0 X. NN0 ) ) |
144 |
|
ovexd |
|- ( ( ph /\ j e. ( NN0 X. NN0 ) ) -> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) e. _V ) |
145 |
144 100
|
fmptd |
|- ( ph -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) : ( NN0 X. NN0 ) --> _V ) |
146 |
|
ffn |
|- ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) : ( NN0 X. NN0 ) --> _V -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) Fn ( NN0 X. NN0 ) ) |
147 |
145 146
|
syl |
|- ( ph -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) Fn ( NN0 X. NN0 ) ) |
148 |
|
eqidd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ) |
149 |
|
simpr |
|- ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ v = c ) -> v = c ) |
150 |
149
|
fveq2d |
|- ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ v = c ) -> ( E ` v ) = ( E ` c ) ) |
151 |
150
|
oveq1d |
|- ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ v = c ) -> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( E ` c ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |
152 |
|
simpr |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> c e. ( NN0 X. NN0 ) ) |
153 |
|
ovexd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( E ` c ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) e. _V ) |
154 |
148 151 152 153
|
fvmptd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ` c ) = ( ( E ` c ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |
155 |
|
eqid |
|- ( ( mulGrp ` K ) |`s U ) = ( ( mulGrp ` K ) |`s U ) |
156 |
22
|
ssrab3 |
|- U C_ ( Base ` ( mulGrp ` K ) ) |
157 |
156
|
a1i |
|- ( ph -> U C_ ( Base ` ( mulGrp ` K ) ) ) |
158 |
157
|
adantr |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> U C_ ( Base ` ( mulGrp ` K ) ) ) |
159 |
3
|
fldcrngd |
|- ( ph -> K e. CRing ) |
160 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
161 |
160
|
crngmgp |
|- ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) |
162 |
159 161
|
syl |
|- ( ph -> ( mulGrp ` K ) e. CMnd ) |
163 |
162 5 22
|
primrootsunit |
|- ( ph -> ( ( ( mulGrp ` K ) PrimRoots R ) = ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) /\ ( ( mulGrp ` K ) |`s U ) e. Abel ) ) |
164 |
163
|
simpld |
|- ( ph -> ( ( mulGrp ` K ) PrimRoots R ) = ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) ) |
165 |
16 164
|
eleqtrd |
|- ( ph -> M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) ) |
166 |
163
|
simprd |
|- ( ph -> ( ( mulGrp ` K ) |`s U ) e. Abel ) |
167 |
|
ablcmn |
|- ( ( ( mulGrp ` K ) |`s U ) e. Abel -> ( ( mulGrp ` K ) |`s U ) e. CMnd ) |
168 |
166 167
|
syl |
|- ( ph -> ( ( mulGrp ` K ) |`s U ) e. CMnd ) |
169 |
5
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
170 |
|
eqid |
|- ( .g ` ( ( mulGrp ` K ) |`s U ) ) = ( .g ` ( ( mulGrp ` K ) |`s U ) ) |
171 |
168 169 170
|
isprimroot |
|- ( ph -> ( M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) <-> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. w e. NN0 ( ( w ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || w ) ) ) ) |
172 |
171
|
biimpd |
|- ( ph -> ( M e. ( ( ( mulGrp ` K ) |`s U ) PrimRoots R ) -> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. w e. NN0 ( ( w ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || w ) ) ) ) |
173 |
165 172
|
mpd |
|- ( ph -> ( M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) /\ ( R ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) /\ A. w e. NN0 ( ( w ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( 0g ` ( ( mulGrp ` K ) |`s U ) ) -> R || w ) ) ) |
174 |
173
|
simp1d |
|- ( ph -> M e. ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) |
175 |
|
eqid |
|- ( Base ` ( mulGrp ` K ) ) = ( Base ` ( mulGrp ` K ) ) |
176 |
155 175
|
ressbas2 |
|- ( U C_ ( Base ` ( mulGrp ` K ) ) -> U = ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) |
177 |
157 176
|
syl |
|- ( ph -> U = ( Base ` ( ( mulGrp ` K ) |`s U ) ) ) |
178 |
174 177
|
eleqtrrd |
|- ( ph -> M e. U ) |
179 |
178
|
adantr |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> M e. U ) |
180 |
6 4 7 12
|
aks6d1c2p1 |
|- ( ph -> E : ( NN0 X. NN0 ) --> NN ) |
181 |
180
|
ffvelcdmda |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( E ` c ) e. NN ) |
182 |
155 158 179 181
|
ressmulgnnd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( E ` c ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) = ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) ) |
183 |
|
eqidd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
184 |
|
simpr |
|- ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ j = c ) -> j = c ) |
185 |
184
|
fveq2d |
|- ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ j = c ) -> ( E ` j ) = ( E ` c ) ) |
186 |
185
|
oveq1d |
|- ( ( ( ph /\ c e. ( NN0 X. NN0 ) ) /\ j = c ) -> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) ) |
187 |
|
ovexd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) e. _V ) |
188 |
183 186 152 187
|
fvmptd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ` c ) = ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) ) |
189 |
188
|
eqcomd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( E ` c ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ` c ) ) |
190 |
154 182 189
|
3eqtrd |
|- ( ( ph /\ c e. ( NN0 X. NN0 ) ) -> ( ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) ` c ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ` c ) ) |
191 |
143 147 190
|
eqfnfvd |
|- ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( E ` v ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
192 |
138 191
|
eqtrd |
|- ( ph -> ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
193 |
134 192
|
eqtrd |
|- ( ph -> ( ( v e. ( NN0 X. NN0 ) |-> ( ( ( P ^ ( 1st ` v ) ) x. ( ( N / P ) ^ ( 2nd ` v ) ) ) ( .g ` ( ( mulGrp ` K ) |`s U ) ) M ) ) |` ( NN0 X. NN0 ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
194 |
132 193
|
eqtrd |
|- ( ph -> ( ( J o. E ) |` ( NN0 X. NN0 ) ) = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
195 |
194
|
imaeq1d |
|- ( ph -> ( ( ( J o. E ) |` ( NN0 X. NN0 ) ) " ( NN0 X. NN0 ) ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) |
196 |
105 195
|
eqtrd |
|- ( ph -> ( ( J o. E ) " ( NN0 X. NN0 ) ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) |
197 |
102 196
|
eqtrid |
|- ( ph -> ( J " ( E " ( NN0 X. NN0 ) ) ) = ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) |
198 |
197
|
fveq2d |
|- ( ph -> ( # ` ( J " ( E " ( NN0 X. NN0 ) ) ) ) = ( # ` ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) ) |
199 |
21 198
|
breqtrd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) " ( NN0 X. NN0 ) ) ) ) |
200 |
1 2 3 4 5 6 7 8 99 10 68 12 13 14 15 16 17 18 19 100 199
|
aks6d1c6lem3 |
|- ( ph -> ( ( D + A ) _C ( D - 1 ) ) <_ ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) ) |