Metamath Proof Explorer


Theorem aks6d1c6lem5

Description: Eliminate the size hypothesis. Claim 6. (Contributed by metakunt, 15-May-2025)

Ref Expression
Hypotheses aks6d1c6lem5.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c6lem5.2 P = chr K
aks6d1c6lem5.3 φ K Field
aks6d1c6lem5.4 φ P
aks6d1c6lem5.5 φ R
aks6d1c6lem5.6 φ N
aks6d1c6lem5.7 φ P N
aks6d1c6lem5.8 φ N gcd R = 1
aks6d1c6lem5.9 φ b 1 A b gcd N = 1
aks6d1c6lem5.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c6lem5.11 A = ϕ R log 2 N
aksaks6dlem5.12 E = k 0 , l 0 P k N P l
aks6d1c6lem5.13 L = ℤRHom /R
aks6d1c6lem5.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c6lem5.15 φ x Base K P mulGrp K x K RingIso K
aks6d1c6lem5.16 φ M mulGrp K PrimRoots R
aks6d1c6lem5.17 H = h 0 0 A eval 1 K G h M
aks6d1c6lem5.18 D = L E 0 × 0
aks6d1c6lem5.19 S = s 0 0 A | t = 0 A s t D 1
aks6d1c6lem5.20 J = j j mulGrp K 𝑠 U M
aks6d1c6lem5.22 U = m Base mulGrp K | n Base mulGrp K n + mulGrp K m = 0 mulGrp K
aks6d1c6lem5.23 X = b Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J J b
Assertion aks6d1c6lem5 φ ( D + A D 1 ) H 0 0 A

Proof

Step Hyp Ref Expression
1 aks6d1c6lem5.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c6lem5.2 P = chr K
3 aks6d1c6lem5.3 φ K Field
4 aks6d1c6lem5.4 φ P
5 aks6d1c6lem5.5 φ R
6 aks6d1c6lem5.6 φ N
7 aks6d1c6lem5.7 φ P N
8 aks6d1c6lem5.8 φ N gcd R = 1
9 aks6d1c6lem5.9 φ b 1 A b gcd N = 1
10 aks6d1c6lem5.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
11 aks6d1c6lem5.11 A = ϕ R log 2 N
12 aksaks6dlem5.12 E = k 0 , l 0 P k N P l
13 aks6d1c6lem5.13 L = ℤRHom /R
14 aks6d1c6lem5.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 aks6d1c6lem5.15 φ x Base K P mulGrp K x K RingIso K
16 aks6d1c6lem5.16 φ M mulGrp K PrimRoots R
17 aks6d1c6lem5.17 H = h 0 0 A eval 1 K G h M
18 aks6d1c6lem5.18 D = L E 0 × 0
19 aks6d1c6lem5.19 S = s 0 0 A | t = 0 A s t D 1
20 aks6d1c6lem5.20 J = j j mulGrp K 𝑠 U M
21 aks6d1c6lem5.22 U = m Base mulGrp K | n Base mulGrp K n + mulGrp K m = 0 mulGrp K
22 aks6d1c6lem5.23 X = b Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J J b
23 eqid 0 mulGrp K 𝑠 U 𝑠 ran J = 0 mulGrp K 𝑠 U 𝑠 ran J
24 3 fldcrngd φ K CRing
25 eqid mulGrp K = mulGrp K
26 25 crngmgp K CRing mulGrp K CMnd
27 24 26 syl φ mulGrp K CMnd
28 27 5 21 20 16 aks6d1c6isolem2 φ J ring GrpHom mulGrp K 𝑠 U 𝑠 ran J
29 eqid J -1 0 mulGrp K 𝑠 U 𝑠 ran J = J -1 0 mulGrp K 𝑠 U 𝑠 ran J
30 eqid ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
31 zringbas = Base ring
32 nfcv _ c d ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
33 nfcv _ d c ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
34 eceq1 d = c d ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = c ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
35 32 33 34 cbvmpt d d ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = c c ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
36 23 28 29 30 22 31 35 ghmquskerco φ J = X d d ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
37 eqid RSpan ring = RSpan ring
38 27 5 21 20 16 37 aks6d1c6isolem3 φ RSpan ring R = J -1 0 mulGrp K 𝑠 U
39 27 5 21 primrootsunit φ mulGrp K PrimRoots R = mulGrp K 𝑠 U PrimRoots R mulGrp K 𝑠 U Abel
40 39 simprd φ mulGrp K 𝑠 U Abel
41 40 ablgrpd φ mulGrp K 𝑠 U Grp
42 41 grpmndd φ mulGrp K 𝑠 U Mnd
43 0zd φ 0
44 simpr φ w = 0 w = 0
45 44 fveqeq2d φ w = 0 J w = 0 mulGrp K 𝑠 U J 0 = 0 mulGrp K 𝑠 U
46 20 a1i φ J = j j mulGrp K 𝑠 U M
47 simpr φ j = 0 j = 0
48 47 oveq1d φ j = 0 j mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U M
49 39 simpld φ mulGrp K PrimRoots R = mulGrp K 𝑠 U PrimRoots R
50 16 49 eleqtrd φ M mulGrp K 𝑠 U PrimRoots R
51 40 ablcmnd φ mulGrp K 𝑠 U CMnd
52 5 nnnn0d φ R 0
53 eqid mulGrp K 𝑠 U = mulGrp K 𝑠 U
54 51 52 53 isprimroot φ M mulGrp K 𝑠 U PrimRoots R M Base mulGrp K 𝑠 U R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U l 0 l mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U R l
55 54 biimpd φ M mulGrp K 𝑠 U PrimRoots R M Base mulGrp K 𝑠 U R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U l 0 l mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U R l
56 50 55 mpd φ M Base mulGrp K 𝑠 U R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U l 0 l mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U R l
57 56 simp1d φ M Base mulGrp K 𝑠 U
58 eqid Base mulGrp K 𝑠 U = Base mulGrp K 𝑠 U
59 eqid 0 mulGrp K 𝑠 U = 0 mulGrp K 𝑠 U
60 58 59 53 mulg0 M Base mulGrp K 𝑠 U 0 mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
61 57 60 syl φ 0 mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
62 61 adantr φ j = 0 0 mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
63 48 62 eqtrd φ j = 0 j mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
64 fvexd φ 0 mulGrp K 𝑠 U V
65 46 63 43 64 fvmptd φ J 0 = 0 mulGrp K 𝑠 U
66 43 45 65 rspcedvd φ w J w = 0 mulGrp K 𝑠 U
67 41 adantr φ j mulGrp K 𝑠 U Grp
68 simpr φ j j
69 57 adantr φ j M Base mulGrp K 𝑠 U
70 58 53 67 68 69 mulgcld φ j j mulGrp K 𝑠 U M Base mulGrp K 𝑠 U
71 70 20 fmptd φ J : Base mulGrp K 𝑠 U
72 71 ffnd φ J Fn
73 fvelrnb J Fn 0 mulGrp K 𝑠 U ran J w J w = 0 mulGrp K 𝑠 U
74 72 73 syl φ 0 mulGrp K 𝑠 U ran J w J w = 0 mulGrp K 𝑠 U
75 66 74 mpbird φ 0 mulGrp K 𝑠 U ran J
76 71 frnd φ ran J Base mulGrp K 𝑠 U
77 eqid mulGrp K 𝑠 U 𝑠 ran J = mulGrp K 𝑠 U 𝑠 ran J
78 77 58 59 ress0g mulGrp K 𝑠 U Mnd 0 mulGrp K 𝑠 U ran J ran J Base mulGrp K 𝑠 U 0 mulGrp K 𝑠 U = 0 mulGrp K 𝑠 U 𝑠 ran J
79 42 75 76 78 syl3anc φ 0 mulGrp K 𝑠 U = 0 mulGrp K 𝑠 U 𝑠 ran J
80 79 sneqd φ 0 mulGrp K 𝑠 U = 0 mulGrp K 𝑠 U 𝑠 ran J
81 80 imaeq2d φ J -1 0 mulGrp K 𝑠 U = J -1 0 mulGrp K 𝑠 U 𝑠 ran J
82 38 81 eqtr2d φ J -1 0 mulGrp K 𝑠 U 𝑠 ran J = RSpan ring R
83 82 oveq2d φ ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = ring ~ QG RSpan ring R
84 83 eceq2d φ d ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = d ring ~ QG RSpan ring R
85 84 mpteq2dv φ d d ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = d d ring ~ QG RSpan ring R
86 eqid ring ~ QG RSpan ring R = ring ~ QG RSpan ring R
87 eqid /R = /R
88 37 86 87 13 znzrh2 R 0 L = d d ring ~ QG RSpan ring R
89 52 88 syl φ L = d d ring ~ QG RSpan ring R
90 89 eqcomd φ d d ring ~ QG RSpan ring R = L
91 85 90 eqtrd φ d d ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = L
92 91 coeq2d φ X d d ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = X L
93 36 92 eqtrd φ J = X L
94 93 coeq2d φ X -1 J = X -1 X L
95 coass X -1 X L = X -1 X L
96 95 eqcomi X -1 X L = X -1 X L
97 94 96 eqtrdi φ X -1 J = X -1 X L
98 77 58 ressbas2 ran J Base mulGrp K 𝑠 U ran J = Base mulGrp K 𝑠 U 𝑠 ran J
99 76 98 syl φ ran J = Base mulGrp K 𝑠 U 𝑠 ran J
100 23 28 29 30 22 99 ghmqusker φ X ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J GrpIso mulGrp K 𝑠 U 𝑠 ran J
101 eqid Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J = Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
102 eqid Base mulGrp K 𝑠 U 𝑠 ran J = Base mulGrp K 𝑠 U 𝑠 ran J
103 101 102 gimf1o X ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J GrpIso mulGrp K 𝑠 U 𝑠 ran J X : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J 1-1 onto Base mulGrp K 𝑠 U 𝑠 ran J
104 100 103 syl φ X : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J 1-1 onto Base mulGrp K 𝑠 U 𝑠 ran J
105 f1ococnv1 X : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J 1-1 onto Base mulGrp K 𝑠 U 𝑠 ran J X -1 X = I Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
106 104 105 syl φ X -1 X = I Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
107 106 coeq1d φ X -1 X L = I Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J L
108 87 zncrng R 0 /R CRing
109 52 108 syl φ /R CRing
110 crngring /R CRing /R Ring
111 13 zrhrhm /R Ring L ring RingHom /R
112 eqid Base /R = Base /R
113 31 112 rhmf L ring RingHom /R L : Base /R
114 109 110 111 113 4syl φ L : Base /R
115 eqid ring / 𝑠 ring ~ QG RSpan ring R = ring / 𝑠 ring ~ QG RSpan ring R
116 37 115 87 znbas2 R 0 Base ring / 𝑠 ring ~ QG RSpan ring R = Base /R
117 52 116 syl φ Base ring / 𝑠 ring ~ QG RSpan ring R = Base /R
118 117 feq3d φ L : Base ring / 𝑠 ring ~ QG RSpan ring R L : Base /R
119 114 118 mpbird φ L : Base ring / 𝑠 ring ~ QG RSpan ring R
120 82 eqcomd φ RSpan ring R = J -1 0 mulGrp K 𝑠 U 𝑠 ran J
121 120 oveq2d φ ring ~ QG RSpan ring R = ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
122 121 oveq2d φ ring / 𝑠 ring ~ QG RSpan ring R = ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
123 122 fveq2d φ Base ring / 𝑠 ring ~ QG RSpan ring R = Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
124 123 feq3d φ L : Base ring / 𝑠 ring ~ QG RSpan ring R L : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
125 119 124 mpbid φ L : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J
126 fcoi2 L : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J I Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J L = L
127 125 126 syl φ I Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J L = L
128 107 127 eqtrd φ X -1 X L = L
129 97 128 eqtr2d φ L = X -1 J
130 129 imaeq1d φ L E 0 × 0 = X -1 J E 0 × 0
131 imaco X -1 J E 0 × 0 = X -1 J E 0 × 0
132 131 a1i φ X -1 J E 0 × 0 = X -1 J E 0 × 0
133 130 132 eqtrd φ L E 0 × 0 = X -1 J E 0 × 0
134 133 fveq2d φ L E 0 × 0 = X -1 J E 0 × 0
135 simplll φ w J u J u = w φ
136 simplr φ w J u J u = w u
137 135 136 jca φ w J u J u = w φ u
138 simplr φ u y z 0 R 1 u = y R + z z 0 R 1
139 simpr φ u y z 0 R 1 u = y R + z v = z v = z
140 139 fveqeq2d φ u y z 0 R 1 u = y R + z v = z J v = J u J z = J u
141 20 a1i φ u y z 0 R 1 u = y R + z J = j j mulGrp K 𝑠 U M
142 simpr φ u y z 0 R 1 u = y R + z j = z j = z
143 142 oveq1d φ u y z 0 R 1 u = y R + z j = z j mulGrp K 𝑠 U M = z mulGrp K 𝑠 U M
144 fzssz 0 R 1
145 144 138 sselid φ u y z 0 R 1 u = y R + z z
146 ovexd φ u y z 0 R 1 u = y R + z z mulGrp K 𝑠 U M V
147 141 143 145 146 fvmptd φ u y z 0 R 1 u = y R + z J z = z mulGrp K 𝑠 U M
148 simpr φ u y z 0 R 1 u = y R + z j = u j = u
149 148 oveq1d φ u y z 0 R 1 u = y R + z j = u j mulGrp K 𝑠 U M = u mulGrp K 𝑠 U M
150 simpr φ u u
151 150 ad3antrrr φ u y z 0 R 1 u = y R + z u
152 ovexd φ u y z 0 R 1 u = y R + z u mulGrp K 𝑠 U M V
153 141 149 151 152 fvmptd φ u y z 0 R 1 u = y R + z J u = u mulGrp K 𝑠 U M
154 simpr φ u y z 0 R 1 u = y R + z u = y R + z
155 154 oveq1d φ u y z 0 R 1 u = y R + z u mulGrp K 𝑠 U M = y R + z mulGrp K 𝑠 U M
156 41 ad3antrrr φ u y z 0 R 1 mulGrp K 𝑠 U Grp
157 simplr φ u y z 0 R 1 y
158 5 adantr φ u R
159 158 ad2antrr φ u y z 0 R 1 R
160 159 nnzd φ u y z 0 R 1 R
161 157 160 zmulcld φ u y z 0 R 1 y R
162 144 sseli z 0 R 1 z
163 162 adantl φ u y z 0 R 1 z
164 57 ad3antrrr φ u y z 0 R 1 M Base mulGrp K 𝑠 U
165 161 163 164 3jca φ u y z 0 R 1 y R z M Base mulGrp K 𝑠 U
166 eqid + mulGrp K 𝑠 U = + mulGrp K 𝑠 U
167 58 53 166 mulgdir mulGrp K 𝑠 U Grp y R z M Base mulGrp K 𝑠 U y R + z mulGrp K 𝑠 U M = y R mulGrp K 𝑠 U M + mulGrp K 𝑠 U z mulGrp K 𝑠 U M
168 156 165 167 syl2anc φ u y z 0 R 1 y R + z mulGrp K 𝑠 U M = y R mulGrp K 𝑠 U M + mulGrp K 𝑠 U z mulGrp K 𝑠 U M
169 157 160 164 3jca φ u y z 0 R 1 y R M Base mulGrp K 𝑠 U
170 58 53 mulgass mulGrp K 𝑠 U Grp y R M Base mulGrp K 𝑠 U y R mulGrp K 𝑠 U M = y mulGrp K 𝑠 U R mulGrp K 𝑠 U M
171 156 169 170 syl2anc φ u y z 0 R 1 y R mulGrp K 𝑠 U M = y mulGrp K 𝑠 U R mulGrp K 𝑠 U M
172 56 simp2d φ R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
173 172 adantr φ u R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
174 173 adantr φ u y R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
175 174 adantr φ u y z 0 R 1 R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
176 175 oveq2d φ u y z 0 R 1 y mulGrp K 𝑠 U R mulGrp K 𝑠 U M = y mulGrp K 𝑠 U 0 mulGrp K 𝑠 U
177 58 53 59 mulgz mulGrp K 𝑠 U Grp y y mulGrp K 𝑠 U 0 mulGrp K 𝑠 U = 0 mulGrp K 𝑠 U
178 156 157 177 syl2anc φ u y z 0 R 1 y mulGrp K 𝑠 U 0 mulGrp K 𝑠 U = 0 mulGrp K 𝑠 U
179 176 178 eqtrd φ u y z 0 R 1 y mulGrp K 𝑠 U R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
180 171 179 eqtrd φ u y z 0 R 1 y R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U
181 180 oveq1d φ u y z 0 R 1 y R mulGrp K 𝑠 U M + mulGrp K 𝑠 U z mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U + mulGrp K 𝑠 U z mulGrp K 𝑠 U M
182 58 53 156 163 164 mulgcld φ u y z 0 R 1 z mulGrp K 𝑠 U M Base mulGrp K 𝑠 U
183 58 166 59 156 182 grplidd φ u y z 0 R 1 0 mulGrp K 𝑠 U + mulGrp K 𝑠 U z mulGrp K 𝑠 U M = z mulGrp K 𝑠 U M
184 181 183 eqtrd φ u y z 0 R 1 y R mulGrp K 𝑠 U M + mulGrp K 𝑠 U z mulGrp K 𝑠 U M = z mulGrp K 𝑠 U M
185 168 184 eqtrd φ u y z 0 R 1 y R + z mulGrp K 𝑠 U M = z mulGrp K 𝑠 U M
186 185 adantr φ u y z 0 R 1 u = y R + z y R + z mulGrp K 𝑠 U M = z mulGrp K 𝑠 U M
187 155 186 eqtrd φ u y z 0 R 1 u = y R + z u mulGrp K 𝑠 U M = z mulGrp K 𝑠 U M
188 153 187 eqtr2d φ u y z 0 R 1 u = y R + z z mulGrp K 𝑠 U M = J u
189 147 188 eqtrd φ u y z 0 R 1 u = y R + z J z = J u
190 138 140 189 rspcedvd φ u y z 0 R 1 u = y R + z v 0 R 1 J v = J u
191 150 158 remexz φ u y z 0 R 1 u = y R + z
192 190 191 r19.29vva φ u v 0 R 1 J v = J u
193 137 192 syl φ w J u J u = w v 0 R 1 J v = J u
194 simpr φ w J u J u = w J u = w
195 194 eqcomd φ w J u J u = w w = J u
196 195 eqeq2d φ w J u J u = w J v = w J v = J u
197 196 rexbidv φ w J u J u = w v 0 R 1 J v = w v 0 R 1 J v = J u
198 193 197 mpbird φ w J u J u = w v 0 R 1 J v = w
199 ssidd φ
200 fvelimab J Fn w J u J u = w
201 72 199 200 syl2anc φ w J u J u = w
202 201 biimpd φ w J u J u = w
203 202 imp φ w J u J u = w
204 198 203 r19.29a φ w J v 0 R 1 J v = w
205 144 a1i φ 0 R 1
206 fvelimab J Fn 0 R 1 w J 0 R 1 v 0 R 1 J v = w
207 72 205 206 syl2anc φ w J 0 R 1 v 0 R 1 J v = w
208 207 adantr φ w J w J 0 R 1 v 0 R 1 J v = w
209 204 208 mpbird φ w J w J 0 R 1
210 209 ex φ w J w J 0 R 1
211 210 ssrdv φ J J 0 R 1
212 207 biimpd φ w J 0 R 1 v 0 R 1 J v = w
213 212 imp φ w J 0 R 1 v 0 R 1 J v = w
214 144 sseli v 0 R 1 v
215 214 adantr v 0 R 1 J v = w v
216 215 adantl φ w J 0 R 1 v 0 R 1 J v = w v
217 simprr φ w J 0 R 1 v 0 R 1 J v = w J v = w
218 213 216 217 reximssdv φ w J 0 R 1 v J v = w
219 72 adantr φ w J 0 R 1 J Fn
220 ssidd φ w J 0 R 1
221 fvelimab J Fn w J v J v = w
222 219 220 221 syl2anc φ w J 0 R 1 w J v J v = w
223 218 222 mpbird φ w J 0 R 1 w J
224 223 ex φ w J 0 R 1 w J
225 224 ssrdv φ J 0 R 1 J
226 211 225 eqssd φ J = J 0 R 1
227 72 fnfund φ Fun J
228 fzfid φ 0 R 1 Fin
229 imafi Fun J 0 R 1 Fin J 0 R 1 Fin
230 227 228 229 syl2anc φ J 0 R 1 Fin
231 226 230 eqeltrd φ J Fin
232 6 4 7 12 aks6d1c2p1 φ E : 0 × 0
233 nnssz
234 233 a1i φ
235 232 234 jca φ E : 0 × 0
236 fss E : 0 × 0 E : 0 × 0
237 235 236 syl φ E : 0 × 0
238 237 frnd φ ran E
239 232 ffnd φ E Fn 0 × 0
240 fnima E Fn 0 × 0 E 0 × 0 = ran E
241 239 240 syl φ E 0 × 0 = ran E
242 241 sseq1d φ E 0 × 0 ran E
243 238 242 mpbird φ E 0 × 0
244 imass2 E 0 × 0 J E 0 × 0 J
245 243 244 syl φ J E 0 × 0 J
246 231 245 ssfid φ J E 0 × 0 Fin
247 dff1o2 X : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J 1-1 onto Base mulGrp K 𝑠 U 𝑠 ran J X Fn Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J Fun X -1 ran X = Base mulGrp K 𝑠 U 𝑠 ran J
248 247 biimpi X : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J 1-1 onto Base mulGrp K 𝑠 U 𝑠 ran J X Fn Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J Fun X -1 ran X = Base mulGrp K 𝑠 U 𝑠 ran J
249 248 simp2d X : Base ring / 𝑠 ring ~ QG J -1 0 mulGrp K 𝑠 U 𝑠 ran J 1-1 onto Base mulGrp K 𝑠 U 𝑠 ran J Fun X -1
250 104 249 syl φ Fun X -1
251 imadomfi J E 0 × 0 Fin Fun X -1 X -1 J E 0 × 0 J E 0 × 0
252 246 250 251 syl2anc φ X -1 J E 0 × 0 J E 0 × 0
253 hashdomi X -1 J E 0 × 0 J E 0 × 0 X -1 J E 0 × 0 J E 0 × 0
254 252 253 syl φ X -1 J E 0 × 0 J E 0 × 0
255 134 254 eqbrtrd φ L E 0 × 0 J E 0 × 0
256 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 255 21 aks6d1c6lem4 φ ( D + A D 1 ) H 0 0 A