Step |
Hyp |
Ref |
Expression |
1 |
|
2ap1caineq.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
2 |
|
2ap1caineq.2 |
⊢ ( 𝜑 → 2 ≤ 𝑁 ) |
3 |
|
oveq1 |
⊢ ( 𝑗 = 2 → ( 𝑗 + 1 ) = ( 2 + 1 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑗 = 2 → ( 2 ↑ ( 𝑗 + 1 ) ) = ( 2 ↑ ( 2 + 1 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑗 = 2 → ( 2 · 𝑗 ) = ( 2 · 2 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑗 = 2 → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 2 ) + 1 ) ) |
7 |
|
id |
⊢ ( 𝑗 = 2 → 𝑗 = 2 ) |
8 |
6 7
|
oveq12d |
⊢ ( 𝑗 = 2 → ( ( ( 2 · 𝑗 ) + 1 ) C 𝑗 ) = ( ( ( 2 · 2 ) + 1 ) C 2 ) ) |
9 |
4 8
|
breq12d |
⊢ ( 𝑗 = 2 → ( ( 2 ↑ ( 𝑗 + 1 ) ) < ( ( ( 2 · 𝑗 ) + 1 ) C 𝑗 ) ↔ ( 2 ↑ ( 2 + 1 ) ) < ( ( ( 2 · 2 ) + 1 ) C 2 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 2 ↑ ( 𝑗 + 1 ) ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 2 · 𝑗 ) = ( 2 · 𝑘 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
14 |
|
id |
⊢ ( 𝑗 = 𝑘 → 𝑗 = 𝑘 ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 2 · 𝑗 ) + 1 ) C 𝑗 ) = ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) |
16 |
11 15
|
breq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 2 ↑ ( 𝑗 + 1 ) ) < ( ( ( 2 · 𝑗 ) + 1 ) C 𝑗 ) ↔ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑘 + 1 ) + 1 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( 2 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 2 · 𝑗 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
21 |
|
id |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → 𝑗 = ( 𝑘 + 1 ) ) |
22 |
20 21
|
oveq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 2 · 𝑗 ) + 1 ) C 𝑗 ) = ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) C ( 𝑘 + 1 ) ) ) |
23 |
18 22
|
breq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) < ( ( ( 2 · 𝑗 ) + 1 ) C 𝑗 ) ↔ ( 2 ↑ ( ( 𝑘 + 1 ) + 1 ) ) < ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) C ( 𝑘 + 1 ) ) ) ) |
24 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 + 1 ) = ( 𝑁 + 1 ) ) |
25 |
24
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( 2 ↑ ( 𝑗 + 1 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 2 · 𝑗 ) = ( 2 · 𝑁 ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝑗 = 𝑁 → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 𝑁 ) + 1 ) ) |
28 |
|
id |
⊢ ( 𝑗 = 𝑁 → 𝑗 = 𝑁 ) |
29 |
27 28
|
oveq12d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 2 · 𝑗 ) + 1 ) C 𝑗 ) = ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) |
30 |
25 29
|
breq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 2 ↑ ( 𝑗 + 1 ) ) < ( ( ( 2 · 𝑗 ) + 1 ) C 𝑗 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) < ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) ) |
31 |
|
8lt10 |
⊢ 8 < ; 1 0 |
32 |
|
eqid |
⊢ 8 = 8 |
33 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
34 |
32 33
|
eqtr4i |
⊢ 8 = ( 2 ↑ 3 ) |
35 |
|
5bc2eq10 |
⊢ ( 5 C 2 ) = ; 1 0 |
36 |
35
|
eqcomi |
⊢ ; 1 0 = ( 5 C 2 ) |
37 |
34 36
|
breq12i |
⊢ ( 8 < ; 1 0 ↔ ( 2 ↑ 3 ) < ( 5 C 2 ) ) |
38 |
31 37
|
mpbi |
⊢ ( 2 ↑ 3 ) < ( 5 C 2 ) |
39 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
40 |
39
|
oveq2i |
⊢ ( 2 ↑ 3 ) = ( 2 ↑ ( 2 + 1 ) ) |
41 |
|
eqid |
⊢ 5 = 5 |
42 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
43 |
42
|
oveq1i |
⊢ ( ( 2 · 2 ) + 1 ) = ( 4 + 1 ) |
44 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
45 |
43 44
|
eqtri |
⊢ ( ( 2 · 2 ) + 1 ) = 5 |
46 |
41 45
|
eqtr4i |
⊢ 5 = ( ( 2 · 2 ) + 1 ) |
47 |
46
|
oveq1i |
⊢ ( 5 C 2 ) = ( ( ( 2 · 2 ) + 1 ) C 2 ) |
48 |
40 47
|
breq12i |
⊢ ( ( 2 ↑ 3 ) < ( 5 C 2 ) ↔ ( 2 ↑ ( 2 + 1 ) ) < ( ( ( 2 · 2 ) + 1 ) C 2 ) ) |
49 |
38 48
|
mpbi |
⊢ ( 2 ↑ ( 2 + 1 ) ) < ( ( ( 2 · 2 ) + 1 ) C 2 ) |
50 |
49
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ ( 2 + 1 ) ) < ( ( ( 2 · 2 ) + 1 ) C 2 ) ) |
51 |
|
2re |
⊢ 2 ∈ ℝ |
52 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → 2 ∈ ℝ ) |
53 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 ∈ ℤ ) |
54 |
|
0red |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 ∈ ℝ ) |
55 |
51
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 2 ∈ ℝ ) |
56 |
53
|
zred |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 ∈ ℝ ) |
57 |
|
2pos |
⊢ 0 < 2 |
58 |
57
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 < 2 ) |
59 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 2 ≤ 𝑘 ) |
60 |
54 55 56 58 59
|
ltletrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 < 𝑘 ) |
61 |
53 60
|
jca |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 𝑘 ∈ ℤ ∧ 0 < 𝑘 ) ) |
62 |
|
elnnz |
⊢ ( 𝑘 ∈ ℕ ↔ ( 𝑘 ∈ ℤ ∧ 0 < 𝑘 ) ) |
63 |
61 62
|
sylibr |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 ∈ ℕ ) |
64 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
65 |
63 64
|
syl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 ∈ ℕ0 ) |
66 |
65
|
nn0red |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 ∈ ℝ ) |
67 |
54 55 66 58 59
|
ltletrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 < 𝑘 ) |
68 |
53 67
|
jca |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 𝑘 ∈ ℤ ∧ 0 < 𝑘 ) ) |
69 |
68 62
|
sylibr |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 ∈ ℕ ) |
70 |
69
|
nnred |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 ∈ ℝ ) |
71 |
70
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
72 |
52 71
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 2 · 𝑘 ) ∈ ℝ ) |
73 |
|
3re |
⊢ 3 ∈ ℝ |
74 |
73
|
a1i |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → 3 ∈ ℝ ) |
75 |
72 74
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( ( 2 · 𝑘 ) + 3 ) ∈ ℝ ) |
76 |
71 52
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 𝑘 + 2 ) ∈ ℝ ) |
77 |
70 55
|
readdcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 𝑘 + 2 ) ∈ ℝ ) |
78 |
69
|
nngt0d |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 < 𝑘 ) |
79 |
|
2rp |
⊢ 2 ∈ ℝ+ |
80 |
79
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 2 ∈ ℝ+ ) |
81 |
70 80
|
ltaddrpd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 < ( 𝑘 + 2 ) ) |
82 |
54 70 77 78 81
|
lttrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 < ( 𝑘 + 2 ) ) |
83 |
54 82
|
ltned |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 ≠ ( 𝑘 + 2 ) ) |
84 |
83
|
necomd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 𝑘 + 2 ) ≠ 0 ) |
85 |
84
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 𝑘 + 2 ) ≠ 0 ) |
86 |
75 76 85
|
redivcld |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ∈ ℝ ) |
87 |
52 86
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) ∈ ℝ ) |
88 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
89 |
88
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 1 ∈ ℕ0 ) |
90 |
65 89
|
nn0addcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
91 |
55 90
|
reexpcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ) |
92 |
91
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ) |
93 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
94 |
93
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 2 ∈ ℕ0 ) |
95 |
94 65
|
nn0mulcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
96 |
95 89
|
nn0addcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
97 |
|
bccl |
⊢ ( ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∈ ℕ0 ) |
98 |
96 53 97
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∈ ℕ0 ) |
99 |
98
|
nn0red |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∈ ℝ ) |
100 |
99
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∈ ℝ ) |
101 |
|
0le2 |
⊢ 0 ≤ 2 |
102 |
101
|
a1i |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → 0 ≤ 2 ) |
103 |
|
eqid |
⊢ 2 = 2 |
104 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
105 |
103 104
|
eqtr4i |
⊢ 2 = ( 2 · 1 ) |
106 |
105
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 2 = ( 2 · 1 ) ) |
107 |
|
1red |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 1 ∈ ℝ ) |
108 |
55 70
|
remulcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 · 𝑘 ) ∈ ℝ ) |
109 |
73
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 3 ∈ ℝ ) |
110 |
108 109
|
readdcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( 2 · 𝑘 ) + 3 ) ∈ ℝ ) |
111 |
110 77 84
|
redivcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ∈ ℝ ) |
112 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
113 |
79
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ+ ) |
114 |
112 113
|
rpaddcld |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 2 ) ∈ ℝ+ ) |
115 |
114
|
rpcnd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 2 ) ∈ ℂ ) |
116 |
115
|
mulid1d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 + 2 ) · 1 ) = ( 𝑘 + 2 ) ) |
117 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
118 |
51
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
119 |
118 117
|
remulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ ) |
120 |
73
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 3 ∈ ℝ ) |
121 |
112
|
rpge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ 𝑘 ) |
122 |
|
1le2 |
⊢ 1 ≤ 2 |
123 |
122
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ 2 ) |
124 |
117 118 121 123
|
lemulge12d |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≤ ( 2 · 𝑘 ) ) |
125 |
|
2lt3 |
⊢ 2 < 3 |
126 |
125
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 < 3 ) |
127 |
117 118 119 120 124 126
|
leltaddd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 2 ) < ( ( 2 · 𝑘 ) + 3 ) ) |
128 |
116 127
|
eqbrtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 + 2 ) · 1 ) < ( ( 2 · 𝑘 ) + 3 ) ) |
129 |
|
1red |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℝ ) |
130 |
119 120
|
readdcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 3 ) ∈ ℝ ) |
131 |
129 130 114
|
ltmuldiv2d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑘 + 2 ) · 1 ) < ( ( 2 · 𝑘 ) + 3 ) ↔ 1 < ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) ) |
132 |
128 131
|
mpbid |
⊢ ( 𝑘 ∈ ℕ → 1 < ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) |
133 |
69 132
|
syl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 1 < ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) |
134 |
107 111 80 133
|
ltmul2dd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 · 1 ) < ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) ) |
135 |
106 134
|
eqbrtrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 2 < ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) ) |
136 |
135
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → 2 < ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) ) |
137 |
101
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 ≤ 2 ) |
138 |
55 90 137
|
expge0d |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 0 ≤ ( 2 ↑ ( 𝑘 + 1 ) ) ) |
139 |
138
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → 0 ≤ ( 2 ↑ ( 𝑘 + 1 ) ) ) |
140 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) |
141 |
52 87 92 100 102 136 139 140
|
ltmul12ad |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) < ( ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) · ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) ) |
142 |
|
2cnd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 2 ∈ ℂ ) |
143 |
142 89 90
|
expaddd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑘 + 1 ) ) · ( 2 ↑ 1 ) ) ) |
144 |
142 90
|
expcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
145 |
142 89
|
expcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 ↑ 1 ) ∈ ℂ ) |
146 |
144 145
|
mulcomd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( 2 ↑ ( 𝑘 + 1 ) ) · ( 2 ↑ 1 ) ) = ( ( 2 ↑ 1 ) · ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
147 |
142
|
exp1d |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 ↑ 1 ) = 2 ) |
148 |
147
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( 2 ↑ 1 ) · ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
149 |
|
eqidd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
150 |
146 148 149
|
3eqtrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( 2 ↑ ( 𝑘 + 1 ) ) · ( 2 ↑ 1 ) ) = ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
151 |
143 150
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 ↑ ( ( 𝑘 + 1 ) + 1 ) ) = ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
152 |
151
|
eqcomd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( 2 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ) |
153 |
152
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( 2 ↑ ( ( 𝑘 + 1 ) + 1 ) ) ) |
154 |
65
|
2np3bcnp1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) C ( 𝑘 + 1 ) ) = ( ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) · ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) ) ) |
155 |
98
|
nn0cnd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∈ ℂ ) |
156 |
69
|
nncnd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 𝑘 ∈ ℂ ) |
157 |
142 156
|
mulcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 · 𝑘 ) ∈ ℂ ) |
158 |
|
3cn |
⊢ 3 ∈ ℂ |
159 |
158
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → 3 ∈ ℂ ) |
160 |
157 159
|
addcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( 2 · 𝑘 ) + 3 ) ∈ ℂ ) |
161 |
156 142
|
addcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 𝑘 + 2 ) ∈ ℂ ) |
162 |
160 161 84
|
divcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ∈ ℂ ) |
163 |
142 162
|
mulcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) ∈ ℂ ) |
164 |
155 163
|
mulcomd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) · ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) ) = ( ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) · ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) ) |
165 |
154 164
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) C ( 𝑘 + 1 ) ) = ( ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) · ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) ) |
166 |
165
|
eqcomd |
⊢ ( ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) → ( ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) · ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) = ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) C ( 𝑘 + 1 ) ) ) |
167 |
166
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) · ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) = ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) C ( 𝑘 + 1 ) ) ) |
168 |
153 167
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( ( 2 · ( 2 ↑ ( 𝑘 + 1 ) ) ) < ( ( 2 · ( ( ( 2 · 𝑘 ) + 3 ) / ( 𝑘 + 2 ) ) ) · ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ) ↔ ( 2 ↑ ( ( 𝑘 + 1 ) + 1 ) ) < ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) C ( 𝑘 + 1 ) ) ) ) |
169 |
141 168
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 2 ↑ ( 𝑘 + 1 ) ) < ( ( ( 2 · 𝑘 ) + 1 ) C 𝑘 ) ∧ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) → ( 2 ↑ ( ( 𝑘 + 1 ) + 1 ) ) < ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) C ( 𝑘 + 1 ) ) ) |
170 |
|
2z |
⊢ 2 ∈ ℤ |
171 |
170
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
172 |
9 16 23 30 50 169 171 1 2
|
uzindd |
⊢ ( 𝜑 → ( 2 ↑ ( 𝑁 + 1 ) ) < ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) |