| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2ap1caineq.1 |
|- ( ph -> N e. ZZ ) |
| 2 |
|
2ap1caineq.2 |
|- ( ph -> 2 <_ N ) |
| 3 |
|
oveq1 |
|- ( j = 2 -> ( j + 1 ) = ( 2 + 1 ) ) |
| 4 |
3
|
oveq2d |
|- ( j = 2 -> ( 2 ^ ( j + 1 ) ) = ( 2 ^ ( 2 + 1 ) ) ) |
| 5 |
|
oveq2 |
|- ( j = 2 -> ( 2 x. j ) = ( 2 x. 2 ) ) |
| 6 |
5
|
oveq1d |
|- ( j = 2 -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. 2 ) + 1 ) ) |
| 7 |
|
id |
|- ( j = 2 -> j = 2 ) |
| 8 |
6 7
|
oveq12d |
|- ( j = 2 -> ( ( ( 2 x. j ) + 1 ) _C j ) = ( ( ( 2 x. 2 ) + 1 ) _C 2 ) ) |
| 9 |
4 8
|
breq12d |
|- ( j = 2 -> ( ( 2 ^ ( j + 1 ) ) < ( ( ( 2 x. j ) + 1 ) _C j ) <-> ( 2 ^ ( 2 + 1 ) ) < ( ( ( 2 x. 2 ) + 1 ) _C 2 ) ) ) |
| 10 |
|
oveq1 |
|- ( j = k -> ( j + 1 ) = ( k + 1 ) ) |
| 11 |
10
|
oveq2d |
|- ( j = k -> ( 2 ^ ( j + 1 ) ) = ( 2 ^ ( k + 1 ) ) ) |
| 12 |
|
oveq2 |
|- ( j = k -> ( 2 x. j ) = ( 2 x. k ) ) |
| 13 |
12
|
oveq1d |
|- ( j = k -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 14 |
|
id |
|- ( j = k -> j = k ) |
| 15 |
13 14
|
oveq12d |
|- ( j = k -> ( ( ( 2 x. j ) + 1 ) _C j ) = ( ( ( 2 x. k ) + 1 ) _C k ) ) |
| 16 |
11 15
|
breq12d |
|- ( j = k -> ( ( 2 ^ ( j + 1 ) ) < ( ( ( 2 x. j ) + 1 ) _C j ) <-> ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) ) ) |
| 17 |
|
oveq1 |
|- ( j = ( k + 1 ) -> ( j + 1 ) = ( ( k + 1 ) + 1 ) ) |
| 18 |
17
|
oveq2d |
|- ( j = ( k + 1 ) -> ( 2 ^ ( j + 1 ) ) = ( 2 ^ ( ( k + 1 ) + 1 ) ) ) |
| 19 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( 2 x. j ) = ( 2 x. ( k + 1 ) ) ) |
| 20 |
19
|
oveq1d |
|- ( j = ( k + 1 ) -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. ( k + 1 ) ) + 1 ) ) |
| 21 |
|
id |
|- ( j = ( k + 1 ) -> j = ( k + 1 ) ) |
| 22 |
20 21
|
oveq12d |
|- ( j = ( k + 1 ) -> ( ( ( 2 x. j ) + 1 ) _C j ) = ( ( ( 2 x. ( k + 1 ) ) + 1 ) _C ( k + 1 ) ) ) |
| 23 |
18 22
|
breq12d |
|- ( j = ( k + 1 ) -> ( ( 2 ^ ( j + 1 ) ) < ( ( ( 2 x. j ) + 1 ) _C j ) <-> ( 2 ^ ( ( k + 1 ) + 1 ) ) < ( ( ( 2 x. ( k + 1 ) ) + 1 ) _C ( k + 1 ) ) ) ) |
| 24 |
|
oveq1 |
|- ( j = N -> ( j + 1 ) = ( N + 1 ) ) |
| 25 |
24
|
oveq2d |
|- ( j = N -> ( 2 ^ ( j + 1 ) ) = ( 2 ^ ( N + 1 ) ) ) |
| 26 |
|
oveq2 |
|- ( j = N -> ( 2 x. j ) = ( 2 x. N ) ) |
| 27 |
26
|
oveq1d |
|- ( j = N -> ( ( 2 x. j ) + 1 ) = ( ( 2 x. N ) + 1 ) ) |
| 28 |
|
id |
|- ( j = N -> j = N ) |
| 29 |
27 28
|
oveq12d |
|- ( j = N -> ( ( ( 2 x. j ) + 1 ) _C j ) = ( ( ( 2 x. N ) + 1 ) _C N ) ) |
| 30 |
25 29
|
breq12d |
|- ( j = N -> ( ( 2 ^ ( j + 1 ) ) < ( ( ( 2 x. j ) + 1 ) _C j ) <-> ( 2 ^ ( N + 1 ) ) < ( ( ( 2 x. N ) + 1 ) _C N ) ) ) |
| 31 |
|
8lt10 |
|- 8 < ; 1 0 |
| 32 |
|
eqid |
|- 8 = 8 |
| 33 |
|
cu2 |
|- ( 2 ^ 3 ) = 8 |
| 34 |
32 33
|
eqtr4i |
|- 8 = ( 2 ^ 3 ) |
| 35 |
|
5bc2eq10 |
|- ( 5 _C 2 ) = ; 1 0 |
| 36 |
35
|
eqcomi |
|- ; 1 0 = ( 5 _C 2 ) |
| 37 |
34 36
|
breq12i |
|- ( 8 < ; 1 0 <-> ( 2 ^ 3 ) < ( 5 _C 2 ) ) |
| 38 |
31 37
|
mpbi |
|- ( 2 ^ 3 ) < ( 5 _C 2 ) |
| 39 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 40 |
39
|
oveq2i |
|- ( 2 ^ 3 ) = ( 2 ^ ( 2 + 1 ) ) |
| 41 |
|
eqid |
|- 5 = 5 |
| 42 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 43 |
42
|
oveq1i |
|- ( ( 2 x. 2 ) + 1 ) = ( 4 + 1 ) |
| 44 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
| 45 |
43 44
|
eqtri |
|- ( ( 2 x. 2 ) + 1 ) = 5 |
| 46 |
41 45
|
eqtr4i |
|- 5 = ( ( 2 x. 2 ) + 1 ) |
| 47 |
46
|
oveq1i |
|- ( 5 _C 2 ) = ( ( ( 2 x. 2 ) + 1 ) _C 2 ) |
| 48 |
40 47
|
breq12i |
|- ( ( 2 ^ 3 ) < ( 5 _C 2 ) <-> ( 2 ^ ( 2 + 1 ) ) < ( ( ( 2 x. 2 ) + 1 ) _C 2 ) ) |
| 49 |
38 48
|
mpbi |
|- ( 2 ^ ( 2 + 1 ) ) < ( ( ( 2 x. 2 ) + 1 ) _C 2 ) |
| 50 |
49
|
a1i |
|- ( ph -> ( 2 ^ ( 2 + 1 ) ) < ( ( ( 2 x. 2 ) + 1 ) _C 2 ) ) |
| 51 |
|
2re |
|- 2 e. RR |
| 52 |
51
|
a1i |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> 2 e. RR ) |
| 53 |
|
simpl |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k e. ZZ ) |
| 54 |
|
0red |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 e. RR ) |
| 55 |
51
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 2 e. RR ) |
| 56 |
53
|
zred |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k e. RR ) |
| 57 |
|
2pos |
|- 0 < 2 |
| 58 |
57
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 < 2 ) |
| 59 |
|
simpr |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 2 <_ k ) |
| 60 |
54 55 56 58 59
|
ltletrd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 < k ) |
| 61 |
53 60
|
jca |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( k e. ZZ /\ 0 < k ) ) |
| 62 |
|
elnnz |
|- ( k e. NN <-> ( k e. ZZ /\ 0 < k ) ) |
| 63 |
61 62
|
sylibr |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k e. NN ) |
| 64 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 65 |
63 64
|
syl |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k e. NN0 ) |
| 66 |
65
|
nn0red |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k e. RR ) |
| 67 |
54 55 66 58 59
|
ltletrd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 < k ) |
| 68 |
53 67
|
jca |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( k e. ZZ /\ 0 < k ) ) |
| 69 |
68 62
|
sylibr |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k e. NN ) |
| 70 |
69
|
nnred |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k e. RR ) |
| 71 |
70
|
3ad2ant3 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> k e. RR ) |
| 72 |
52 71
|
remulcld |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( 2 x. k ) e. RR ) |
| 73 |
|
3re |
|- 3 e. RR |
| 74 |
73
|
a1i |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> 3 e. RR ) |
| 75 |
72 74
|
readdcld |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( ( 2 x. k ) + 3 ) e. RR ) |
| 76 |
71 52
|
readdcld |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( k + 2 ) e. RR ) |
| 77 |
70 55
|
readdcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( k + 2 ) e. RR ) |
| 78 |
69
|
nngt0d |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 < k ) |
| 79 |
|
2rp |
|- 2 e. RR+ |
| 80 |
79
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 2 e. RR+ ) |
| 81 |
70 80
|
ltaddrpd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k < ( k + 2 ) ) |
| 82 |
54 70 77 78 81
|
lttrd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 < ( k + 2 ) ) |
| 83 |
54 82
|
ltned |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 =/= ( k + 2 ) ) |
| 84 |
83
|
necomd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( k + 2 ) =/= 0 ) |
| 85 |
84
|
3ad2ant3 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( k + 2 ) =/= 0 ) |
| 86 |
75 76 85
|
redivcld |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) e. RR ) |
| 87 |
52 86
|
remulcld |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) e. RR ) |
| 88 |
|
1nn0 |
|- 1 e. NN0 |
| 89 |
88
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 1 e. NN0 ) |
| 90 |
65 89
|
nn0addcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( k + 1 ) e. NN0 ) |
| 91 |
55 90
|
reexpcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 ^ ( k + 1 ) ) e. RR ) |
| 92 |
91
|
3ad2ant3 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( 2 ^ ( k + 1 ) ) e. RR ) |
| 93 |
|
2nn0 |
|- 2 e. NN0 |
| 94 |
93
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 2 e. NN0 ) |
| 95 |
94 65
|
nn0mulcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 x. k ) e. NN0 ) |
| 96 |
95 89
|
nn0addcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
| 97 |
|
bccl |
|- ( ( ( ( 2 x. k ) + 1 ) e. NN0 /\ k e. ZZ ) -> ( ( ( 2 x. k ) + 1 ) _C k ) e. NN0 ) |
| 98 |
96 53 97
|
syl2anc |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( ( 2 x. k ) + 1 ) _C k ) e. NN0 ) |
| 99 |
98
|
nn0red |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( ( 2 x. k ) + 1 ) _C k ) e. RR ) |
| 100 |
99
|
3ad2ant3 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( ( ( 2 x. k ) + 1 ) _C k ) e. RR ) |
| 101 |
|
0le2 |
|- 0 <_ 2 |
| 102 |
101
|
a1i |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> 0 <_ 2 ) |
| 103 |
|
eqid |
|- 2 = 2 |
| 104 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 105 |
103 104
|
eqtr4i |
|- 2 = ( 2 x. 1 ) |
| 106 |
105
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 2 = ( 2 x. 1 ) ) |
| 107 |
|
1red |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 1 e. RR ) |
| 108 |
55 70
|
remulcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 x. k ) e. RR ) |
| 109 |
73
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 3 e. RR ) |
| 110 |
108 109
|
readdcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( 2 x. k ) + 3 ) e. RR ) |
| 111 |
110 77 84
|
redivcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) e. RR ) |
| 112 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 113 |
79
|
a1i |
|- ( k e. NN -> 2 e. RR+ ) |
| 114 |
112 113
|
rpaddcld |
|- ( k e. NN -> ( k + 2 ) e. RR+ ) |
| 115 |
114
|
rpcnd |
|- ( k e. NN -> ( k + 2 ) e. CC ) |
| 116 |
115
|
mulridd |
|- ( k e. NN -> ( ( k + 2 ) x. 1 ) = ( k + 2 ) ) |
| 117 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 118 |
51
|
a1i |
|- ( k e. NN -> 2 e. RR ) |
| 119 |
118 117
|
remulcld |
|- ( k e. NN -> ( 2 x. k ) e. RR ) |
| 120 |
73
|
a1i |
|- ( k e. NN -> 3 e. RR ) |
| 121 |
112
|
rpge0d |
|- ( k e. NN -> 0 <_ k ) |
| 122 |
|
1le2 |
|- 1 <_ 2 |
| 123 |
122
|
a1i |
|- ( k e. NN -> 1 <_ 2 ) |
| 124 |
117 118 121 123
|
lemulge12d |
|- ( k e. NN -> k <_ ( 2 x. k ) ) |
| 125 |
|
2lt3 |
|- 2 < 3 |
| 126 |
125
|
a1i |
|- ( k e. NN -> 2 < 3 ) |
| 127 |
117 118 119 120 124 126
|
leltaddd |
|- ( k e. NN -> ( k + 2 ) < ( ( 2 x. k ) + 3 ) ) |
| 128 |
116 127
|
eqbrtrd |
|- ( k e. NN -> ( ( k + 2 ) x. 1 ) < ( ( 2 x. k ) + 3 ) ) |
| 129 |
|
1red |
|- ( k e. NN -> 1 e. RR ) |
| 130 |
119 120
|
readdcld |
|- ( k e. NN -> ( ( 2 x. k ) + 3 ) e. RR ) |
| 131 |
129 130 114
|
ltmuldiv2d |
|- ( k e. NN -> ( ( ( k + 2 ) x. 1 ) < ( ( 2 x. k ) + 3 ) <-> 1 < ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) ) |
| 132 |
128 131
|
mpbid |
|- ( k e. NN -> 1 < ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) |
| 133 |
69 132
|
syl |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 1 < ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) |
| 134 |
107 111 80 133
|
ltmul2dd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 x. 1 ) < ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) ) |
| 135 |
106 134
|
eqbrtrd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 2 < ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) ) |
| 136 |
135
|
3ad2ant3 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> 2 < ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) ) |
| 137 |
101
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 <_ 2 ) |
| 138 |
55 90 137
|
expge0d |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 0 <_ ( 2 ^ ( k + 1 ) ) ) |
| 139 |
138
|
3ad2ant3 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> 0 <_ ( 2 ^ ( k + 1 ) ) ) |
| 140 |
|
simp2 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) ) |
| 141 |
52 87 92 100 102 136 139 140
|
ltmul12ad |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( 2 x. ( 2 ^ ( k + 1 ) ) ) < ( ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) x. ( ( ( 2 x. k ) + 1 ) _C k ) ) ) |
| 142 |
|
2cnd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 2 e. CC ) |
| 143 |
142 89 90
|
expaddd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 ^ ( ( k + 1 ) + 1 ) ) = ( ( 2 ^ ( k + 1 ) ) x. ( 2 ^ 1 ) ) ) |
| 144 |
142 90
|
expcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 ^ ( k + 1 ) ) e. CC ) |
| 145 |
142 89
|
expcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 ^ 1 ) e. CC ) |
| 146 |
144 145
|
mulcomd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( 2 ^ ( k + 1 ) ) x. ( 2 ^ 1 ) ) = ( ( 2 ^ 1 ) x. ( 2 ^ ( k + 1 ) ) ) ) |
| 147 |
142
|
exp1d |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 ^ 1 ) = 2 ) |
| 148 |
147
|
oveq1d |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( 2 ^ 1 ) x. ( 2 ^ ( k + 1 ) ) ) = ( 2 x. ( 2 ^ ( k + 1 ) ) ) ) |
| 149 |
|
eqidd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 x. ( 2 ^ ( k + 1 ) ) ) = ( 2 x. ( 2 ^ ( k + 1 ) ) ) ) |
| 150 |
146 148 149
|
3eqtrd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( 2 ^ ( k + 1 ) ) x. ( 2 ^ 1 ) ) = ( 2 x. ( 2 ^ ( k + 1 ) ) ) ) |
| 151 |
143 150
|
eqtrd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 ^ ( ( k + 1 ) + 1 ) ) = ( 2 x. ( 2 ^ ( k + 1 ) ) ) ) |
| 152 |
151
|
eqcomd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 x. ( 2 ^ ( k + 1 ) ) ) = ( 2 ^ ( ( k + 1 ) + 1 ) ) ) |
| 153 |
152
|
3ad2ant3 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( 2 x. ( 2 ^ ( k + 1 ) ) ) = ( 2 ^ ( ( k + 1 ) + 1 ) ) ) |
| 154 |
65
|
2np3bcnp1 |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( ( 2 x. ( k + 1 ) ) + 1 ) _C ( k + 1 ) ) = ( ( ( ( 2 x. k ) + 1 ) _C k ) x. ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) ) ) |
| 155 |
98
|
nn0cnd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( ( 2 x. k ) + 1 ) _C k ) e. CC ) |
| 156 |
69
|
nncnd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> k e. CC ) |
| 157 |
142 156
|
mulcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 x. k ) e. CC ) |
| 158 |
|
3cn |
|- 3 e. CC |
| 159 |
158
|
a1i |
|- ( ( k e. ZZ /\ 2 <_ k ) -> 3 e. CC ) |
| 160 |
157 159
|
addcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( 2 x. k ) + 3 ) e. CC ) |
| 161 |
156 142
|
addcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( k + 2 ) e. CC ) |
| 162 |
160 161 84
|
divcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) e. CC ) |
| 163 |
142 162
|
mulcld |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) e. CC ) |
| 164 |
155 163
|
mulcomd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( ( ( 2 x. k ) + 1 ) _C k ) x. ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) ) = ( ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) x. ( ( ( 2 x. k ) + 1 ) _C k ) ) ) |
| 165 |
154 164
|
eqtrd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( ( 2 x. ( k + 1 ) ) + 1 ) _C ( k + 1 ) ) = ( ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) x. ( ( ( 2 x. k ) + 1 ) _C k ) ) ) |
| 166 |
165
|
eqcomd |
|- ( ( k e. ZZ /\ 2 <_ k ) -> ( ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) x. ( ( ( 2 x. k ) + 1 ) _C k ) ) = ( ( ( 2 x. ( k + 1 ) ) + 1 ) _C ( k + 1 ) ) ) |
| 167 |
166
|
3ad2ant3 |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) x. ( ( ( 2 x. k ) + 1 ) _C k ) ) = ( ( ( 2 x. ( k + 1 ) ) + 1 ) _C ( k + 1 ) ) ) |
| 168 |
153 167
|
breq12d |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( ( 2 x. ( 2 ^ ( k + 1 ) ) ) < ( ( 2 x. ( ( ( 2 x. k ) + 3 ) / ( k + 2 ) ) ) x. ( ( ( 2 x. k ) + 1 ) _C k ) ) <-> ( 2 ^ ( ( k + 1 ) + 1 ) ) < ( ( ( 2 x. ( k + 1 ) ) + 1 ) _C ( k + 1 ) ) ) ) |
| 169 |
141 168
|
mpbid |
|- ( ( ph /\ ( 2 ^ ( k + 1 ) ) < ( ( ( 2 x. k ) + 1 ) _C k ) /\ ( k e. ZZ /\ 2 <_ k ) ) -> ( 2 ^ ( ( k + 1 ) + 1 ) ) < ( ( ( 2 x. ( k + 1 ) ) + 1 ) _C ( k + 1 ) ) ) |
| 170 |
|
2z |
|- 2 e. ZZ |
| 171 |
170
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 172 |
9 16 23 30 50 169 171 1 2
|
uzindd |
|- ( ph -> ( 2 ^ ( N + 1 ) ) < ( ( ( 2 x. N ) + 1 ) _C N ) ) |