Metamath Proof Explorer


Theorem 2ap1caineq

Description: Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024)

Ref Expression
Hypotheses 2ap1caineq.1 φ N
2ap1caineq.2 φ 2 N
Assertion 2ap1caineq φ 2 N + 1 < ( 2 N + 1 N)

Proof

Step Hyp Ref Expression
1 2ap1caineq.1 φ N
2 2ap1caineq.2 φ 2 N
3 oveq1 j = 2 j + 1 = 2 + 1
4 3 oveq2d j = 2 2 j + 1 = 2 2 + 1
5 oveq2 j = 2 2 j = 2 2
6 5 oveq1d j = 2 2 j + 1 = 2 2 + 1
7 id j = 2 j = 2
8 6 7 oveq12d j = 2 ( 2 j + 1 j) = ( 2 2 + 1 2 )
9 4 8 breq12d j = 2 2 j + 1 < ( 2 j + 1 j) 2 2 + 1 < ( 2 2 + 1 2 )
10 oveq1 j = k j + 1 = k + 1
11 10 oveq2d j = k 2 j + 1 = 2 k + 1
12 oveq2 j = k 2 j = 2 k
13 12 oveq1d j = k 2 j + 1 = 2 k + 1
14 id j = k j = k
15 13 14 oveq12d j = k ( 2 j + 1 j) = ( 2 k + 1 k)
16 11 15 breq12d j = k 2 j + 1 < ( 2 j + 1 j) 2 k + 1 < ( 2 k + 1 k)
17 oveq1 j = k + 1 j + 1 = k + 1 + 1
18 17 oveq2d j = k + 1 2 j + 1 = 2 k + 1 + 1
19 oveq2 j = k + 1 2 j = 2 k + 1
20 19 oveq1d j = k + 1 2 j + 1 = 2 k + 1 + 1
21 id j = k + 1 j = k + 1
22 20 21 oveq12d j = k + 1 ( 2 j + 1 j) = ( 2 k + 1 + 1 k + 1 )
23 18 22 breq12d j = k + 1 2 j + 1 < ( 2 j + 1 j) 2 k + 1 + 1 < ( 2 k + 1 + 1 k + 1 )
24 oveq1 j = N j + 1 = N + 1
25 24 oveq2d j = N 2 j + 1 = 2 N + 1
26 oveq2 j = N 2 j = 2 N
27 26 oveq1d j = N 2 j + 1 = 2 N + 1
28 id j = N j = N
29 27 28 oveq12d j = N ( 2 j + 1 j) = ( 2 N + 1 N)
30 25 29 breq12d j = N 2 j + 1 < ( 2 j + 1 j) 2 N + 1 < ( 2 N + 1 N)
31 8lt10 8 < 10
32 eqid 8 = 8
33 cu2 2 3 = 8
34 32 33 eqtr4i 8 = 2 3
35 5bc2eq10 ( 5 2 ) = 10
36 35 eqcomi 10 = ( 5 2 )
37 34 36 breq12i 8 < 10 2 3 < ( 5 2 )
38 31 37 mpbi 2 3 < ( 5 2 )
39 df-3 3 = 2 + 1
40 39 oveq2i 2 3 = 2 2 + 1
41 eqid 5 = 5
42 2t2e4 2 2 = 4
43 42 oveq1i 2 2 + 1 = 4 + 1
44 4p1e5 4 + 1 = 5
45 43 44 eqtri 2 2 + 1 = 5
46 41 45 eqtr4i 5 = 2 2 + 1
47 46 oveq1i ( 5 2 ) = ( 2 2 + 1 2 )
48 40 47 breq12i 2 3 < ( 5 2 ) 2 2 + 1 < ( 2 2 + 1 2 )
49 38 48 mpbi 2 2 + 1 < ( 2 2 + 1 2 )
50 49 a1i φ 2 2 + 1 < ( 2 2 + 1 2 )
51 2re 2
52 51 a1i φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2
53 simpl k 2 k k
54 0red k 2 k 0
55 51 a1i k 2 k 2
56 53 zred k 2 k k
57 2pos 0 < 2
58 57 a1i k 2 k 0 < 2
59 simpr k 2 k 2 k
60 54 55 56 58 59 ltletrd k 2 k 0 < k
61 53 60 jca k 2 k k 0 < k
62 elnnz k k 0 < k
63 61 62 sylibr k 2 k k
64 nnnn0 k k 0
65 63 64 syl k 2 k k 0
66 65 nn0red k 2 k k
67 54 55 66 58 59 ltletrd k 2 k 0 < k
68 53 67 jca k 2 k k 0 < k
69 68 62 sylibr k 2 k k
70 69 nnred k 2 k k
71 70 3ad2ant3 φ 2 k + 1 < ( 2 k + 1 k) k 2 k k
72 52 71 remulcld φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 k
73 3re 3
74 73 a1i φ 2 k + 1 < ( 2 k + 1 k) k 2 k 3
75 72 74 readdcld φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 k + 3
76 71 52 readdcld φ 2 k + 1 < ( 2 k + 1 k) k 2 k k + 2
77 70 55 readdcld k 2 k k + 2
78 69 nngt0d k 2 k 0 < k
79 2rp 2 +
80 79 a1i k 2 k 2 +
81 70 80 ltaddrpd k 2 k k < k + 2
82 54 70 77 78 81 lttrd k 2 k 0 < k + 2
83 54 82 ltned k 2 k 0 k + 2
84 83 necomd k 2 k k + 2 0
85 84 3ad2ant3 φ 2 k + 1 < ( 2 k + 1 k) k 2 k k + 2 0
86 75 76 85 redivcld φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 k + 3 k + 2
87 52 86 remulcld φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 2 k + 3 k + 2
88 1nn0 1 0
89 88 a1i k 2 k 1 0
90 65 89 nn0addcld k 2 k k + 1 0
91 55 90 reexpcld k 2 k 2 k + 1
92 91 3ad2ant3 φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 k + 1
93 2nn0 2 0
94 93 a1i k 2 k 2 0
95 94 65 nn0mulcld k 2 k 2 k 0
96 95 89 nn0addcld k 2 k 2 k + 1 0
97 bccl 2 k + 1 0 k ( 2 k + 1 k) 0
98 96 53 97 syl2anc k 2 k ( 2 k + 1 k) 0
99 98 nn0red k 2 k ( 2 k + 1 k)
100 99 3ad2ant3 φ 2 k + 1 < ( 2 k + 1 k) k 2 k ( 2 k + 1 k)
101 0le2 0 2
102 101 a1i φ 2 k + 1 < ( 2 k + 1 k) k 2 k 0 2
103 eqid 2 = 2
104 2t1e2 2 1 = 2
105 103 104 eqtr4i 2 = 2 1
106 105 a1i k 2 k 2 = 2 1
107 1red k 2 k 1
108 55 70 remulcld k 2 k 2 k
109 73 a1i k 2 k 3
110 108 109 readdcld k 2 k 2 k + 3
111 110 77 84 redivcld k 2 k 2 k + 3 k + 2
112 nnrp k k +
113 79 a1i k 2 +
114 112 113 rpaddcld k k + 2 +
115 114 rpcnd k k + 2
116 115 mulid1d k k + 2 1 = k + 2
117 nnre k k
118 51 a1i k 2
119 118 117 remulcld k 2 k
120 73 a1i k 3
121 112 rpge0d k 0 k
122 1le2 1 2
123 122 a1i k 1 2
124 117 118 121 123 lemulge12d k k 2 k
125 2lt3 2 < 3
126 125 a1i k 2 < 3
127 117 118 119 120 124 126 leltaddd k k + 2 < 2 k + 3
128 116 127 eqbrtrd k k + 2 1 < 2 k + 3
129 1red k 1
130 119 120 readdcld k 2 k + 3
131 129 130 114 ltmuldiv2d k k + 2 1 < 2 k + 3 1 < 2 k + 3 k + 2
132 128 131 mpbid k 1 < 2 k + 3 k + 2
133 69 132 syl k 2 k 1 < 2 k + 3 k + 2
134 107 111 80 133 ltmul2dd k 2 k 2 1 < 2 2 k + 3 k + 2
135 106 134 eqbrtrd k 2 k 2 < 2 2 k + 3 k + 2
136 135 3ad2ant3 φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 < 2 2 k + 3 k + 2
137 101 a1i k 2 k 0 2
138 55 90 137 expge0d k 2 k 0 2 k + 1
139 138 3ad2ant3 φ 2 k + 1 < ( 2 k + 1 k) k 2 k 0 2 k + 1
140 simp2 φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 k + 1 < ( 2 k + 1 k)
141 52 87 92 100 102 136 139 140 ltmul12ad φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 2 k + 1 < 2 2 k + 3 k + 2 ( 2 k + 1 k)
142 2cnd k 2 k 2
143 142 89 90 expaddd k 2 k 2 k + 1 + 1 = 2 k + 1 2 1
144 142 90 expcld k 2 k 2 k + 1
145 142 89 expcld k 2 k 2 1
146 144 145 mulcomd k 2 k 2 k + 1 2 1 = 2 1 2 k + 1
147 142 exp1d k 2 k 2 1 = 2
148 147 oveq1d k 2 k 2 1 2 k + 1 = 2 2 k + 1
149 eqidd k 2 k 2 2 k + 1 = 2 2 k + 1
150 146 148 149 3eqtrd k 2 k 2 k + 1 2 1 = 2 2 k + 1
151 143 150 eqtrd k 2 k 2 k + 1 + 1 = 2 2 k + 1
152 151 eqcomd k 2 k 2 2 k + 1 = 2 k + 1 + 1
153 152 3ad2ant3 φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 2 k + 1 = 2 k + 1 + 1
154 65 2np3bcnp1 k 2 k ( 2 k + 1 + 1 k + 1 ) = ( 2 k + 1 k) 2 2 k + 3 k + 2
155 98 nn0cnd k 2 k ( 2 k + 1 k)
156 69 nncnd k 2 k k
157 142 156 mulcld k 2 k 2 k
158 3cn 3
159 158 a1i k 2 k 3
160 157 159 addcld k 2 k 2 k + 3
161 156 142 addcld k 2 k k + 2
162 160 161 84 divcld k 2 k 2 k + 3 k + 2
163 142 162 mulcld k 2 k 2 2 k + 3 k + 2
164 155 163 mulcomd k 2 k ( 2 k + 1 k) 2 2 k + 3 k + 2 = 2 2 k + 3 k + 2 ( 2 k + 1 k)
165 154 164 eqtrd k 2 k ( 2 k + 1 + 1 k + 1 ) = 2 2 k + 3 k + 2 ( 2 k + 1 k)
166 165 eqcomd k 2 k 2 2 k + 3 k + 2 ( 2 k + 1 k) = ( 2 k + 1 + 1 k + 1 )
167 166 3ad2ant3 φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 2 k + 3 k + 2 ( 2 k + 1 k) = ( 2 k + 1 + 1 k + 1 )
168 153 167 breq12d φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 2 k + 1 < 2 2 k + 3 k + 2 ( 2 k + 1 k) 2 k + 1 + 1 < ( 2 k + 1 + 1 k + 1 )
169 141 168 mpbid φ 2 k + 1 < ( 2 k + 1 k) k 2 k 2 k + 1 + 1 < ( 2 k + 1 + 1 k + 1 )
170 2z 2
171 170 a1i φ 2
172 9 16 23 30 50 169 171 1 2 uzindd φ 2 N + 1 < ( 2 N + 1 N)