Metamath Proof Explorer


Theorem 2np3bcnp1

Description: Part of induction step for 2ap1caineq . (Contributed by metakunt, 8-Jun-2024)

Ref Expression
Hypothesis 2np3bcnp1.1 φ N 0
Assertion 2np3bcnp1 φ ( 2 N + 1 + 1 N + 1 ) = ( 2 N + 1 N) 2 2 N + 3 N + 2

Proof

Step Hyp Ref Expression
1 2np3bcnp1.1 φ N 0
2 2cnd φ 2
3 1 nn0cnd φ N
4 1cnd φ 1
5 2 3 4 adddid φ 2 N + 1 = 2 N + 2 1
6 2t1e2 2 1 = 2
7 6 oveq2i 2 N + 2 1 = 2 N + 2
8 5 7 eqtrdi φ 2 N + 1 = 2 N + 2
9 8 oveq1d φ 2 N + 1 + 1 = 2 N + 2 + 1
10 2 3 mulcld φ 2 N
11 10 2 4 addassd φ 2 N + 2 + 1 = 2 N + 2 + 1
12 9 11 eqtrd φ 2 N + 1 + 1 = 2 N + 2 + 1
13 2p1e3 2 + 1 = 3
14 13 a1i φ 2 + 1 = 3
15 14 oveq2d φ 2 N + 2 + 1 = 2 N + 3
16 12 15 eqtrd φ 2 N + 1 + 1 = 2 N + 3
17 16 oveq1d φ ( 2 N + 1 + 1 N + 1 ) = ( 2 N + 3 N + 1 )
18 0zd φ 0
19 2z 2
20 19 a1i φ 2
21 1 nn0zd φ N
22 20 21 zmulcld φ 2 N
23 3z 3
24 23 a1i φ 3
25 22 24 zaddcld φ 2 N + 3
26 21 peano2zd φ N + 1
27 1 nn0red φ N
28 1red φ 1
29 1 nn0ge0d φ 0 N
30 0le1 0 1
31 30 a1i φ 0 1
32 27 28 29 31 addge0d φ 0 N + 1
33 2re 2
34 33 a1i φ 2
35 34 27 remulcld φ 2 N
36 3re 3
37 36 a1i φ 3
38 1le2 1 2
39 38 a1i φ 1 2
40 27 34 29 39 lemulge12d φ N 2 N
41 1le3 1 3
42 41 a1i φ 1 3
43 27 28 35 37 40 42 le2addd φ N + 1 2 N + 3
44 18 25 26 32 43 elfzd φ N + 1 0 2 N + 3
45 bcval2 N + 1 0 2 N + 3 ( 2 N + 3 N + 1 ) = 2 N + 3 ! 2 N + 3 - N + 1 ! N + 1 !
46 44 45 syl φ ( 2 N + 3 N + 1 ) = 2 N + 3 ! 2 N + 3 - N + 1 ! N + 1 !
47 37 recnd φ 3
48 10 47 3 4 addsub4d φ 2 N + 3 - N + 1 = 2 N N + 3 - 1
49 2txmxeqx N 2 N N = N
50 3 49 syl φ 2 N N = N
51 3m1e2 3 1 = 2
52 51 a1i φ 3 1 = 2
53 50 52 oveq12d φ 2 N N + 3 - 1 = N + 2
54 48 53 eqtrd φ 2 N + 3 - N + 1 = N + 2
55 54 fveq2d φ 2 N + 3 - N + 1 ! = N + 2 !
56 55 oveq1d φ 2 N + 3 - N + 1 ! N + 1 ! = N + 2 ! N + 1 !
57 56 oveq2d φ 2 N + 3 ! 2 N + 3 - N + 1 ! N + 1 ! = 2 N + 3 ! N + 2 ! N + 1 !
58 2nn0 2 0
59 58 a1i φ 2 0
60 1 59 nn0addcld φ N + 2 0
61 60 faccld φ N + 2 !
62 61 nncnd φ N + 2 !
63 1nn0 1 0
64 63 a1i φ 1 0
65 1 64 nn0addcld φ N + 1 0
66 65 faccld φ N + 1 !
67 66 nncnd φ N + 1 !
68 62 67 mulcomd φ N + 2 ! N + 1 ! = N + 1 ! N + 2 !
69 68 oveq2d φ 2 N + 3 ! N + 2 ! N + 1 ! = 2 N + 3 ! N + 1 ! N + 2 !
70 10 4 2 addassd φ 2 N + 1 + 2 = 2 N + 1 + 2
71 1p2e3 1 + 2 = 3
72 71 oveq2i 2 N + 1 + 2 = 2 N + 3
73 70 72 eqtrdi φ 2 N + 1 + 2 = 2 N + 3
74 73 fveq2d φ 2 N + 1 + 2 ! = 2 N + 3 !
75 74 eqcomd φ 2 N + 3 ! = 2 N + 1 + 2 !
76 59 1 nn0mulcld φ 2 N 0
77 76 64 nn0addcld φ 2 N + 1 0
78 facp2 2 N + 1 0 2 N + 1 + 2 ! = 2 N + 1 ! 2 N + 1 + 1 2 N + 1 + 2
79 77 78 syl φ 2 N + 1 + 2 ! = 2 N + 1 ! 2 N + 1 + 1 2 N + 1 + 2
80 75 79 eqtrd φ 2 N + 3 ! = 2 N + 1 ! 2 N + 1 + 1 2 N + 1 + 2
81 10 4 4 addassd φ 2 N + 1 + 1 = 2 N + 1 + 1
82 1p1e2 1 + 1 = 2
83 82 a1i φ 1 + 1 = 2
84 83 oveq2d φ 2 N + 1 + 1 = 2 N + 2
85 81 84 eqtrd φ 2 N + 1 + 1 = 2 N + 2
86 71 a1i φ 1 + 2 = 3
87 86 oveq2d φ 2 N + 1 + 2 = 2 N + 3
88 70 87 eqtrd φ 2 N + 1 + 2 = 2 N + 3
89 85 88 oveq12d φ 2 N + 1 + 1 2 N + 1 + 2 = 2 N + 2 2 N + 3
90 89 oveq2d φ 2 N + 1 ! 2 N + 1 + 1 2 N + 1 + 2 = 2 N + 1 ! 2 N + 2 2 N + 3
91 80 90 eqtrd φ 2 N + 3 ! = 2 N + 1 ! 2 N + 2 2 N + 3
92 91 oveq1d φ 2 N + 3 ! N + 1 ! N + 2 ! = 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N + 2 !
93 facp2 N 0 N + 2 ! = N ! N + 1 N + 2
94 1 93 syl φ N + 2 ! = N ! N + 1 N + 2
95 94 oveq2d φ N + 1 ! N + 2 ! = N + 1 ! N ! N + 1 N + 2
96 95 oveq2d φ 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N + 2 ! = 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N ! N + 1 N + 2
97 1 faccld φ N !
98 97 nncnd φ N !
99 3 4 addcld φ N + 1
100 3 2 addcld φ N + 2
101 99 100 mulcld φ N + 1 N + 2
102 67 98 101 mulassd φ N + 1 ! N ! N + 1 N + 2 = N + 1 ! N ! N + 1 N + 2
103 102 eqcomd φ N + 1 ! N ! N + 1 N + 2 = N + 1 ! N ! N + 1 N + 2
104 103 oveq2d φ 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N ! N + 1 N + 2 = 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N ! N + 1 N + 2
105 77 faccld φ 2 N + 1 !
106 105 nncnd φ 2 N + 1 !
107 67 98 mulcld φ N + 1 ! N !
108 10 2 addcld φ 2 N + 2
109 10 47 addcld φ 2 N + 3
110 108 109 mulcld φ 2 N + 2 2 N + 3
111 66 nnne0d φ N + 1 ! 0
112 97 nnne0d φ N ! 0
113 67 98 111 112 mulne0d φ N + 1 ! N ! 0
114 0red φ 0
115 27 28 readdcld φ N + 1
116 27 ltp1d φ N < N + 1
117 114 27 115 29 116 lelttrd φ 0 < N + 1
118 114 117 ltned φ 0 N + 1
119 118 necomd φ N + 1 0
120 27 34 readdcld φ N + 2
121 2rp 2 +
122 121 a1i φ 2 +
123 27 122 ltaddrpd φ N < N + 2
124 114 27 120 29 123 lelttrd φ 0 < N + 2
125 114 124 ltned φ 0 N + 2
126 125 necomd φ N + 2 0
127 99 100 119 126 mulne0d φ N + 1 N + 2 0
128 106 107 110 101 113 127 divmuldivd φ 2 N + 1 ! N + 1 ! N ! 2 N + 2 2 N + 3 N + 1 N + 2 = 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N ! N + 1 N + 2
129 128 eqcomd φ 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N ! N + 1 N + 2 = 2 N + 1 ! N + 1 ! N ! 2 N + 2 2 N + 3 N + 1 N + 2
130 22 peano2zd φ 2 N + 1
131 35 28 readdcld φ 2 N + 1
132 35 lep1d φ 2 N 2 N + 1
133 27 35 131 40 132 letrd φ N 2 N + 1
134 18 130 21 29 133 elfzd φ N 0 2 N + 1
135 bcval2 N 0 2 N + 1 ( 2 N + 1 N) = 2 N + 1 ! 2 N + 1 - N ! N !
136 134 135 syl φ ( 2 N + 1 N) = 2 N + 1 ! 2 N + 1 - N ! N !
137 10 4 3 addsubd φ 2 N + 1 - N = 2 N - N + 1
138 50 oveq1d φ 2 N - N + 1 = N + 1
139 137 138 eqtrd φ 2 N + 1 - N = N + 1
140 139 fveq2d φ 2 N + 1 - N ! = N + 1 !
141 140 oveq1d φ 2 N + 1 - N ! N ! = N + 1 ! N !
142 141 oveq2d φ 2 N + 1 ! 2 N + 1 - N ! N ! = 2 N + 1 ! N + 1 ! N !
143 136 142 eqtrd φ ( 2 N + 1 N) = 2 N + 1 ! N + 1 ! N !
144 143 eqcomd φ 2 N + 1 ! N + 1 ! N ! = ( 2 N + 1 N)
145 108 99 109 100 119 126 divmuldivd φ 2 N + 2 N + 1 2 N + 3 N + 2 = 2 N + 2 2 N + 3 N + 1 N + 2
146 145 eqcomd φ 2 N + 2 2 N + 3 N + 1 N + 2 = 2 N + 2 N + 1 2 N + 3 N + 2
147 8 eqcomd φ 2 N + 2 = 2 N + 1
148 147 oveq1d φ 2 N + 2 N + 1 = 2 N + 1 N + 1
149 2 99 119 divcan4d φ 2 N + 1 N + 1 = 2
150 148 149 eqtrd φ 2 N + 2 N + 1 = 2
151 eqidd φ 2 N + 3 N + 2 = 2 N + 3 N + 2
152 150 151 oveq12d φ 2 N + 2 N + 1 2 N + 3 N + 2 = 2 2 N + 3 N + 2
153 146 152 eqtrd φ 2 N + 2 2 N + 3 N + 1 N + 2 = 2 2 N + 3 N + 2
154 144 153 oveq12d φ 2 N + 1 ! N + 1 ! N ! 2 N + 2 2 N + 3 N + 1 N + 2 = ( 2 N + 1 N) 2 2 N + 3 N + 2
155 129 154 eqtrd φ 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N ! N + 1 N + 2 = ( 2 N + 1 N) 2 2 N + 3 N + 2
156 104 155 eqtrd φ 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N ! N + 1 N + 2 = ( 2 N + 1 N) 2 2 N + 3 N + 2
157 96 156 eqtrd φ 2 N + 1 ! 2 N + 2 2 N + 3 N + 1 ! N + 2 ! = ( 2 N + 1 N) 2 2 N + 3 N + 2
158 92 157 eqtrd φ 2 N + 3 ! N + 1 ! N + 2 ! = ( 2 N + 1 N) 2 2 N + 3 N + 2
159 69 158 eqtrd φ 2 N + 3 ! N + 2 ! N + 1 ! = ( 2 N + 1 N) 2 2 N + 3 N + 2
160 57 159 eqtrd φ 2 N + 3 ! 2 N + 3 - N + 1 ! N + 1 ! = ( 2 N + 1 N) 2 2 N + 3 N + 2
161 46 160 eqtrd φ ( 2 N + 3 N + 1 ) = ( 2 N + 1 N) 2 2 N + 3 N + 2
162 17 161 eqtrd φ ( 2 N + 1 + 1 N + 1 ) = ( 2 N + 1 N) 2 2 N + 3 N + 2