| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2np3bcnp1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 3 |
1
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 4 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 5 |
2 3 4
|
adddid |
⊢ ( 𝜑 → ( 2 · ( 𝑁 + 1 ) ) = ( ( 2 · 𝑁 ) + ( 2 · 1 ) ) ) |
| 6 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 7 |
6
|
oveq2i |
⊢ ( ( 2 · 𝑁 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑁 ) + 2 ) |
| 8 |
5 7
|
eqtrdi |
⊢ ( 𝜑 → ( 2 · ( 𝑁 + 1 ) ) = ( ( 2 · 𝑁 ) + 2 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( 𝑁 + 1 ) ) + 1 ) = ( ( ( 2 · 𝑁 ) + 2 ) + 1 ) ) |
| 10 |
2 3
|
mulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
| 11 |
10 2 4
|
addassd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 2 ) + 1 ) = ( ( 2 · 𝑁 ) + ( 2 + 1 ) ) ) |
| 12 |
9 11
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · ( 𝑁 + 1 ) ) + 1 ) = ( ( 2 · 𝑁 ) + ( 2 + 1 ) ) ) |
| 13 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( 2 + 1 ) = 3 ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + ( 2 + 1 ) ) = ( ( 2 · 𝑁 ) + 3 ) ) |
| 16 |
12 15
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · ( 𝑁 + 1 ) ) + 1 ) = ( ( 2 · 𝑁 ) + 3 ) ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑁 + 1 ) ) + 1 ) C ( 𝑁 + 1 ) ) = ( ( ( 2 · 𝑁 ) + 3 ) C ( 𝑁 + 1 ) ) ) |
| 18 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 19 |
|
2z |
⊢ 2 ∈ ℤ |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 21 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 22 |
20 21
|
zmulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℤ ) |
| 23 |
|
3z |
⊢ 3 ∈ ℤ |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℤ ) |
| 25 |
22 24
|
zaddcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 3 ) ∈ ℤ ) |
| 26 |
21
|
peano2zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 27 |
1
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 28 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 29 |
1
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
| 30 |
|
0le1 |
⊢ 0 ≤ 1 |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 32 |
27 28 29 31
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 + 1 ) ) |
| 33 |
|
2re |
⊢ 2 ∈ ℝ |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 35 |
34 27
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
| 36 |
|
3re |
⊢ 3 ∈ ℝ |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 38 |
|
1le2 |
⊢ 1 ≤ 2 |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → 1 ≤ 2 ) |
| 40 |
27 34 29 39
|
lemulge12d |
⊢ ( 𝜑 → 𝑁 ≤ ( 2 · 𝑁 ) ) |
| 41 |
|
1le3 |
⊢ 1 ≤ 3 |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → 1 ≤ 3 ) |
| 43 |
27 28 35 37 40 42
|
le2addd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≤ ( ( 2 · 𝑁 ) + 3 ) ) |
| 44 |
18 25 26 32 43
|
elfzd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 0 ... ( ( 2 · 𝑁 ) + 3 ) ) ) |
| 45 |
|
bcval2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( 0 ... ( ( 2 · 𝑁 ) + 3 ) ) → ( ( ( 2 · 𝑁 ) + 3 ) C ( 𝑁 + 1 ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 3 ) − ( 𝑁 + 1 ) ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 3 ) C ( 𝑁 + 1 ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 3 ) − ( 𝑁 + 1 ) ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 47 |
37
|
recnd |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
| 48 |
10 47 3 4
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 3 ) − ( 𝑁 + 1 ) ) = ( ( ( 2 · 𝑁 ) − 𝑁 ) + ( 3 − 1 ) ) ) |
| 49 |
|
2txmxeqx |
⊢ ( 𝑁 ∈ ℂ → ( ( 2 · 𝑁 ) − 𝑁 ) = 𝑁 ) |
| 50 |
3 49
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) − 𝑁 ) = 𝑁 ) |
| 51 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 52 |
51
|
a1i |
⊢ ( 𝜑 → ( 3 − 1 ) = 2 ) |
| 53 |
50 52
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) − 𝑁 ) + ( 3 − 1 ) ) = ( 𝑁 + 2 ) ) |
| 54 |
48 53
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 3 ) − ( 𝑁 + 1 ) ) = ( 𝑁 + 2 ) ) |
| 55 |
54
|
fveq2d |
⊢ ( 𝜑 → ( ! ‘ ( ( ( 2 · 𝑁 ) + 3 ) − ( 𝑁 + 1 ) ) ) = ( ! ‘ ( 𝑁 + 2 ) ) ) |
| 56 |
55
|
oveq1d |
⊢ ( 𝜑 → ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 3 ) − ( 𝑁 + 1 ) ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) = ( ( ! ‘ ( 𝑁 + 2 ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 3 ) − ( 𝑁 + 1 ) ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( 𝑁 + 2 ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 58 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 60 |
1 59
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑁 + 2 ) ∈ ℕ0 ) |
| 61 |
60
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑁 + 2 ) ) ∈ ℕ ) |
| 62 |
61
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑁 + 2 ) ) ∈ ℂ ) |
| 63 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 65 |
1 64
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 66 |
65
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑁 + 1 ) ) ∈ ℕ ) |
| 67 |
66
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 68 |
62 67
|
mulcomd |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑁 + 2 ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ ( 𝑁 + 2 ) ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( 𝑁 + 2 ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ ( 𝑁 + 2 ) ) ) ) ) |
| 70 |
10 4 2
|
addassd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) = ( ( 2 · 𝑁 ) + ( 1 + 2 ) ) ) |
| 71 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
| 72 |
71
|
oveq2i |
⊢ ( ( 2 · 𝑁 ) + ( 1 + 2 ) ) = ( ( 2 · 𝑁 ) + 3 ) |
| 73 |
70 72
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) = ( ( 2 · 𝑁 ) + 3 ) ) |
| 74 |
73
|
fveq2d |
⊢ ( 𝜑 → ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) = ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) ) |
| 75 |
74
|
eqcomd |
⊢ ( 𝜑 → ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) = ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) ) |
| 76 |
59 1
|
nn0mulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ0 ) |
| 77 |
76 64
|
nn0addcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ0 ) |
| 78 |
|
facp2 |
⊢ ( ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ0 → ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) ) ) |
| 79 |
77 78
|
syl |
⊢ ( 𝜑 → ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) ) ) |
| 80 |
75 79
|
eqtrd |
⊢ ( 𝜑 → ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) ) ) |
| 81 |
10 4 4
|
addassd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) = ( ( 2 · 𝑁 ) + ( 1 + 1 ) ) ) |
| 82 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → ( 1 + 1 ) = 2 ) |
| 84 |
83
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + ( 1 + 1 ) ) = ( ( 2 · 𝑁 ) + 2 ) ) |
| 85 |
81 84
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) = ( ( 2 · 𝑁 ) + 2 ) ) |
| 86 |
71
|
a1i |
⊢ ( 𝜑 → ( 1 + 2 ) = 3 ) |
| 87 |
86
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + ( 1 + 2 ) ) = ( ( 2 · 𝑁 ) + 3 ) ) |
| 88 |
70 87
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) = ( ( 2 · 𝑁 ) + 3 ) ) |
| 89 |
85 88
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) = ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) |
| 90 |
89
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) + 2 ) ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) ) |
| 91 |
80 90
|
eqtrd |
⊢ ( 𝜑 → ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) ) |
| 92 |
91
|
oveq1d |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ ( 𝑁 + 2 ) ) ) ) = ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ ( 𝑁 + 2 ) ) ) ) ) |
| 93 |
|
facp2 |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 + 2 ) ) = ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) |
| 94 |
1 93
|
syl |
⊢ ( 𝜑 → ( ! ‘ ( 𝑁 + 2 ) ) = ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) |
| 95 |
94
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ ( 𝑁 + 2 ) ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ ( 𝑁 + 2 ) ) ) ) = ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) ) ) |
| 97 |
1
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 98 |
97
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 99 |
3 4
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ ) |
| 100 |
3 2
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + 2 ) ∈ ℂ ) |
| 101 |
99 100
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ∈ ℂ ) |
| 102 |
67 98 101
|
mulassd |
⊢ ( 𝜑 → ( ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) ) |
| 103 |
102
|
eqcomd |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) = ( ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) |
| 104 |
103
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) ) = ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) ) |
| 105 |
77
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℕ ) |
| 106 |
105
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
| 107 |
67 98
|
mulcld |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ∈ ℂ ) |
| 108 |
10 2
|
addcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 2 ) ∈ ℂ ) |
| 109 |
10 47
|
addcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 3 ) ∈ ℂ ) |
| 110 |
108 109
|
mulcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ∈ ℂ ) |
| 111 |
66
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝑁 + 1 ) ) ≠ 0 ) |
| 112 |
97
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ 𝑁 ) ≠ 0 ) |
| 113 |
67 98 111 112
|
mulne0d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ≠ 0 ) |
| 114 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 115 |
27 28
|
readdcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℝ ) |
| 116 |
27
|
ltp1d |
⊢ ( 𝜑 → 𝑁 < ( 𝑁 + 1 ) ) |
| 117 |
114 27 115 29 116
|
lelttrd |
⊢ ( 𝜑 → 0 < ( 𝑁 + 1 ) ) |
| 118 |
114 117
|
ltned |
⊢ ( 𝜑 → 0 ≠ ( 𝑁 + 1 ) ) |
| 119 |
118
|
necomd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≠ 0 ) |
| 120 |
27 34
|
readdcld |
⊢ ( 𝜑 → ( 𝑁 + 2 ) ∈ ℝ ) |
| 121 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 122 |
121
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 123 |
27 122
|
ltaddrpd |
⊢ ( 𝜑 → 𝑁 < ( 𝑁 + 2 ) ) |
| 124 |
114 27 120 29 123
|
lelttrd |
⊢ ( 𝜑 → 0 < ( 𝑁 + 2 ) ) |
| 125 |
114 124
|
ltned |
⊢ ( 𝜑 → 0 ≠ ( 𝑁 + 2 ) ) |
| 126 |
125
|
necomd |
⊢ ( 𝜑 → ( 𝑁 + 2 ) ≠ 0 ) |
| 127 |
99 100 119 126
|
mulne0d |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ≠ 0 ) |
| 128 |
106 107 110 101 113 127
|
divmuldivd |
⊢ ( 𝜑 → ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ) · ( ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) / ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) = ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) ) |
| 129 |
128
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) = ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ) · ( ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) / ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) ) |
| 130 |
22
|
peano2zd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℤ ) |
| 131 |
35 28
|
readdcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ) |
| 132 |
35
|
lep1d |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ≤ ( ( 2 · 𝑁 ) + 1 ) ) |
| 133 |
27 35 131 40 132
|
letrd |
⊢ ( 𝜑 → 𝑁 ≤ ( ( 2 · 𝑁 ) + 1 ) ) |
| 134 |
18 130 21 29 133
|
elfzd |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 135 |
|
bcval2 |
⊢ ( 𝑁 ∈ ( 0 ... ( ( 2 · 𝑁 ) + 1 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) · ( ! ‘ 𝑁 ) ) ) ) |
| 136 |
134 135
|
syl |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) · ( ! ‘ 𝑁 ) ) ) ) |
| 137 |
10 4 3
|
addsubd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) = ( ( ( 2 · 𝑁 ) − 𝑁 ) + 1 ) ) |
| 138 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) − 𝑁 ) + 1 ) = ( 𝑁 + 1 ) ) |
| 139 |
137 138
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) = ( 𝑁 + 1 ) ) |
| 140 |
139
|
fveq2d |
⊢ ( 𝜑 → ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) = ( ! ‘ ( 𝑁 + 1 ) ) ) |
| 141 |
140
|
oveq1d |
⊢ ( 𝜑 → ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) · ( ! ‘ 𝑁 ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ) |
| 142 |
141
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) · ( ! ‘ 𝑁 ) ) ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ) ) |
| 143 |
136 142
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) = ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ) ) |
| 144 |
143
|
eqcomd |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ) = ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) |
| 145 |
108 99 109 100 119 126
|
divmuldivd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) + 2 ) / ( 𝑁 + 1 ) ) · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) / ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) |
| 146 |
145
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) / ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 2 ) / ( 𝑁 + 1 ) ) · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) |
| 147 |
8
|
eqcomd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 2 ) = ( 2 · ( 𝑁 + 1 ) ) ) |
| 148 |
147
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 2 ) / ( 𝑁 + 1 ) ) = ( ( 2 · ( 𝑁 + 1 ) ) / ( 𝑁 + 1 ) ) ) |
| 149 |
2 99 119
|
divcan4d |
⊢ ( 𝜑 → ( ( 2 · ( 𝑁 + 1 ) ) / ( 𝑁 + 1 ) ) = 2 ) |
| 150 |
148 149
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 2 ) / ( 𝑁 + 1 ) ) = 2 ) |
| 151 |
|
eqidd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) = ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) |
| 152 |
150 151
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) + 2 ) / ( 𝑁 + 1 ) ) · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) = ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) |
| 153 |
146 152
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) / ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) = ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) |
| 154 |
144 153
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) ) · ( ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) / ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |
| 155 |
129 154
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ 𝑁 ) ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |
| 156 |
104 155
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) · ( 𝑁 + 2 ) ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |
| 157 |
96 156
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ! ‘ ( ( 2 · 𝑁 ) + 1 ) ) · ( ( ( 2 · 𝑁 ) + 2 ) · ( ( 2 · 𝑁 ) + 3 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ ( 𝑁 + 2 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |
| 158 |
92 157
|
eqtrd |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) · ( ! ‘ ( 𝑁 + 2 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |
| 159 |
69 158
|
eqtrd |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( 𝑁 + 2 ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |
| 160 |
57 159
|
eqtrd |
⊢ ( 𝜑 → ( ( ! ‘ ( ( 2 · 𝑁 ) + 3 ) ) / ( ( ! ‘ ( ( ( 2 · 𝑁 ) + 3 ) − ( 𝑁 + 1 ) ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |
| 161 |
46 160
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 3 ) C ( 𝑁 + 1 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |
| 162 |
17 161
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑁 + 1 ) ) + 1 ) C ( 𝑁 + 1 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 3 ) / ( 𝑁 + 2 ) ) ) ) ) |