Metamath Proof Explorer


Theorem aks6d1c7

Description: N is a prime power if the hypotheses of the AKS algorithm hold. Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf . (Contributed by metakunt, 16-May-2025)

Ref Expression
Hypotheses aks6d1c7.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) }
aks6d1c7.2 𝑃 = ( chr ‘ 𝐾 )
aks6d1c7.3 ( 𝜑𝐾 ∈ Field )
aks6d1c7.4 ( 𝜑𝑃 ∈ ℙ )
aks6d1c7.5 ( 𝜑𝑅 ∈ ℕ )
aks6d1c7.6 ( 𝜑𝑁 ∈ ( ℤ ‘ 3 ) )
aks6d1c7.7 ( 𝜑𝑃𝑁 )
aks6d1c7.8 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
aks6d1c7.9 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) )
aks6d1c7.10 ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( od𝑅 ) ‘ 𝑁 ) )
aks6d1c7.11 ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) )
aks6d1c7.12 ( 𝜑𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) )
aks6d1c7.13 ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 )
aks6d1c7.14 ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ( ( var1𝐾 ) ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) )
Assertion aks6d1c7 ( 𝜑𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 aks6d1c7.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) }
2 aks6d1c7.2 𝑃 = ( chr ‘ 𝐾 )
3 aks6d1c7.3 ( 𝜑𝐾 ∈ Field )
4 aks6d1c7.4 ( 𝜑𝑃 ∈ ℙ )
5 aks6d1c7.5 ( 𝜑𝑅 ∈ ℕ )
6 aks6d1c7.6 ( 𝜑𝑁 ∈ ( ℤ ‘ 3 ) )
7 aks6d1c7.7 ( 𝜑𝑃𝑁 )
8 aks6d1c7.8 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
9 aks6d1c7.9 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) )
10 aks6d1c7.10 ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( od𝑅 ) ‘ 𝑁 ) )
11 aks6d1c7.11 ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) )
12 aks6d1c7.12 ( 𝜑𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) )
13 aks6d1c7.13 ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 )
14 aks6d1c7.14 ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ( ( var1𝐾 ) ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) )
15 simpr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑞 = 𝑟 )
16 7 ad2antrr ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → 𝑃𝑁 )
17 breq1 ( 𝑠 = 𝑃 → ( 𝑠𝑁𝑃𝑁 ) )
18 eqeq1 ( 𝑠 = 𝑃 → ( 𝑠 = 𝑟𝑃 = 𝑟 ) )
19 17 18 bibi12d ( 𝑠 = 𝑃 → ( ( 𝑠𝑁𝑠 = 𝑟 ) ↔ ( 𝑃𝑁𝑃 = 𝑟 ) ) )
20 nfv 𝑠 ( 𝑝𝑁𝑝 = 𝑟 )
21 nfv 𝑝 ( 𝑠𝑁𝑠 = 𝑟 )
22 breq1 ( 𝑝 = 𝑠 → ( 𝑝𝑁𝑠𝑁 ) )
23 equequ1 ( 𝑝 = 𝑠 → ( 𝑝 = 𝑟𝑠 = 𝑟 ) )
24 22 23 bibi12d ( 𝑝 = 𝑠 → ( ( 𝑝𝑁𝑝 = 𝑟 ) ↔ ( 𝑠𝑁𝑠 = 𝑟 ) ) )
25 20 21 24 cbvralw ( ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ↔ ∀ 𝑠 ∈ ℙ ( 𝑠𝑁𝑠 = 𝑟 ) )
26 25 biimpi ( ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) → ∀ 𝑠 ∈ ℙ ( 𝑠𝑁𝑠 = 𝑟 ) )
27 26 adantl ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → ∀ 𝑠 ∈ ℙ ( 𝑠𝑁𝑠 = 𝑟 ) )
28 4 ad2antrr ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → 𝑃 ∈ ℙ )
29 19 27 28 rspcdva ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → ( 𝑃𝑁𝑃 = 𝑟 ) )
30 29 biimpd ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → ( 𝑃𝑁𝑃 = 𝑟 ) )
31 16 30 mpd ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → 𝑃 = 𝑟 )
32 31 ad2antrr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑃 = 𝑟 )
33 32 eqcomd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑟 = 𝑃 )
34 15 33 eqtrd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑞 = 𝑃 )
35 34 oveq1d ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑞 pCnt 𝑁 ) = ( 𝑃 pCnt 𝑁 ) )
36 eluzelz ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℤ )
37 6 36 syl ( 𝜑𝑁 ∈ ℤ )
38 0red ( 𝜑 → 0 ∈ ℝ )
39 3re 3 ∈ ℝ
40 39 a1i ( 𝜑 → 3 ∈ ℝ )
41 37 zred ( 𝜑𝑁 ∈ ℝ )
42 3pos 0 < 3
43 42 a1i ( 𝜑 → 0 < 3 )
44 eluzle ( 𝑁 ∈ ( ℤ ‘ 3 ) → 3 ≤ 𝑁 )
45 6 44 syl ( 𝜑 → 3 ≤ 𝑁 )
46 38 40 41 43 45 ltletrd ( 𝜑 → 0 < 𝑁 )
47 37 46 jca ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) )
48 elnnz ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) )
49 47 48 sylibr ( 𝜑𝑁 ∈ ℕ )
50 pcelnn ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃𝑁 ) )
51 4 49 50 syl2anc ( 𝜑 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃𝑁 ) )
52 7 51 mpbird ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ )
53 52 nncnd ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℂ )
54 53 mulridd ( 𝜑 → ( ( 𝑃 pCnt 𝑁 ) · 1 ) = ( 𝑃 pCnt 𝑁 ) )
55 54 eqcomd ( 𝜑 → ( 𝑃 pCnt 𝑁 ) = ( ( 𝑃 pCnt 𝑁 ) · 1 ) )
56 1nn0 1 ∈ ℕ0
57 56 a1i ( 𝜑 → 1 ∈ ℕ0 )
58 pcidlem ( ( 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = 1 )
59 4 57 58 syl2anc ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = 1 )
60 59 eqcomd ( 𝜑 → 1 = ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) )
61 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
62 4 61 syl ( 𝜑𝑃 ∈ ℕ )
63 62 nncnd ( 𝜑𝑃 ∈ ℂ )
64 63 exp1d ( 𝜑 → ( 𝑃 ↑ 1 ) = 𝑃 )
65 64 oveq2d ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = ( 𝑃 pCnt 𝑃 ) )
66 60 65 eqtrd ( 𝜑 → 1 = ( 𝑃 pCnt 𝑃 ) )
67 66 oveq2d ( 𝜑 → ( ( 𝑃 pCnt 𝑁 ) · 1 ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) )
68 55 67 eqtrd ( 𝜑 → ( 𝑃 pCnt 𝑁 ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) )
69 68 adantr ( ( 𝜑𝑟 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) )
70 69 ad3antrrr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) )
71 28 ad2antrr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑃 ∈ ℙ )
72 nnq ( 𝑃 ∈ ℕ → 𝑃 ∈ ℚ )
73 62 72 syl ( 𝜑𝑃 ∈ ℚ )
74 62 nnne0d ( 𝜑𝑃 ≠ 0 )
75 73 74 jca ( 𝜑 → ( 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) )
76 75 adantr ( ( 𝜑𝑟 ∈ ℙ ) → ( 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) )
77 76 ad3antrrr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) )
78 52 nnzd ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℤ )
79 78 adantr ( ( 𝜑𝑟 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ )
80 79 adantr ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ )
81 80 adantr ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ )
82 81 adantr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ )
83 pcexp ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) )
84 71 77 82 83 syl3anc ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) )
85 84 eqcomd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
86 70 85 eqtrd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
87 34 eqcomd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑃 = 𝑞 )
88 87 oveq1d ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
89 86 88 eqtrd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
90 35 89 eqtrd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
91 breq1 ( 𝑠 = 𝑞 → ( 𝑠𝑁𝑞𝑁 ) )
92 equequ1 ( 𝑠 = 𝑞 → ( 𝑠 = 𝑟𝑞 = 𝑟 ) )
93 91 92 bibi12d ( 𝑠 = 𝑞 → ( ( 𝑠𝑁𝑠 = 𝑟 ) ↔ ( 𝑞𝑁𝑞 = 𝑟 ) ) )
94 27 adantr ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ∀ 𝑠 ∈ ℙ ( 𝑠𝑁𝑠 = 𝑟 ) )
95 simpr ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ )
96 93 94 95 rspcdva ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞𝑁𝑞 = 𝑟 ) )
97 96 bicomd ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 = 𝑟𝑞𝑁 ) )
98 97 notbid ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( ¬ 𝑞 = 𝑟 ↔ ¬ 𝑞𝑁 ) )
99 98 biimpa ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ¬ 𝑞𝑁 )
100 95 adantr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑞 ∈ ℙ )
101 49 adantr ( ( 𝜑𝑟 ∈ ℙ ) → 𝑁 ∈ ℕ )
102 101 ad3antrrr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑁 ∈ ℕ )
103 pceq0 ( ( 𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑞 pCnt 𝑁 ) = 0 ↔ ¬ 𝑞𝑁 ) )
104 100 102 103 syl2anc ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( ( 𝑞 pCnt 𝑁 ) = 0 ↔ ¬ 𝑞𝑁 ) )
105 99 104 mpbird ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 pCnt 𝑁 ) = 0 )
106 neqne ( ¬ 𝑞 = 𝑟𝑞𝑟 )
107 106 adantl ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑞𝑟 )
108 16 adantr ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑃𝑁 )
109 28 adantr ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑃 ∈ ℙ )
110 19 94 109 rspcdva ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑃𝑁𝑃 = 𝑟 ) )
111 110 biimpd ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑃𝑁𝑃 = 𝑟 ) )
112 108 111 mpd ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑃 = 𝑟 )
113 112 adantr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑃 = 𝑟 )
114 113 eqcomd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑟 = 𝑃 )
115 107 114 neeqtrd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑞𝑃 )
116 115 neneqd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ¬ 𝑞 = 𝑃 )
117 prmuz2 ( 𝑞 ∈ ℙ → 𝑞 ∈ ( ℤ ‘ 2 ) )
118 117 adantl ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ( ℤ ‘ 2 ) )
119 118 adantr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑞 ∈ ( ℤ ‘ 2 ) )
120 28 ad2antrr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑃 ∈ ℙ )
121 dvdsprm ( ( 𝑞 ∈ ( ℤ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑞𝑃𝑞 = 𝑃 ) )
122 119 120 121 syl2anc ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞𝑃𝑞 = 𝑃 ) )
123 116 122 mtbird ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ¬ 𝑞𝑃 )
124 62 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑃 ∈ ℕ )
125 124 nnzd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑃 ∈ ℤ )
126 52 adantr ( ( 𝜑𝑟 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ )
127 126 adantr ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ )
128 127 adantr ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ )
129 128 adantr ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ )
130 prmdvdsexp ( ( 𝑞 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) → ( 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ↔ 𝑞𝑃 ) )
131 100 125 129 130 syl3anc ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ↔ 𝑞𝑃 ) )
132 123 131 mtbird ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ¬ 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) )
133 120 102 pccld ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 )
134 124 133 nnexpcld ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ )
135 pceq0 ( ( 𝑞 ∈ ℙ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ ) → ( ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = 0 ↔ ¬ 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
136 100 134 135 syl2anc ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = 0 ↔ ¬ 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
137 132 136 mpbird ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = 0 )
138 137 eqcomd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 0 = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
139 105 138 eqtrd ( ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
140 90 139 pm2.61dan ( ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
141 140 ralrimiva ( ( ( 𝜑𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
142 1 2 3 4 5 6 7 8 9 10 11 12 13 14 aks6d1c7lem4 ( 𝜑 → ∃! 𝑝 ∈ ℙ 𝑝𝑁 )
143 reu6 ( ∃! 𝑝 ∈ ℙ 𝑝𝑁 ↔ ∃ 𝑟 ∈ ℙ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) )
144 142 143 sylib ( 𝜑 → ∃ 𝑟 ∈ ℙ ∀ 𝑝 ∈ ℙ ( 𝑝𝑁𝑝 = 𝑟 ) )
145 141 144 r19.29a ( 𝜑 → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) )
146 49 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
147 62 nnnn0d ( 𝜑𝑃 ∈ ℕ0 )
148 4 49 pccld ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 )
149 147 148 nn0expcld ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ0 )
150 pc11 ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ0 ) → ( 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) )
151 146 149 150 syl2anc ( 𝜑 → ( 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) )
152 145 151 mpbird ( 𝜑𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) )