Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c7.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c7.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c7.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c7.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c7.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c7.6 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
7 |
|
aks6d1c7.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c7.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c7.9 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
10 |
|
aks6d1c7.10 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
11 |
|
aks6d1c7.11 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
12 |
|
aks6d1c7.12 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
13 |
|
aks6d1c7.13 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
14 |
|
aks6d1c7.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑞 = 𝑟 ) |
16 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → 𝑃 ∥ 𝑁 ) |
17 |
|
breq1 |
⊢ ( 𝑠 = 𝑃 → ( 𝑠 ∥ 𝑁 ↔ 𝑃 ∥ 𝑁 ) ) |
18 |
|
eqeq1 |
⊢ ( 𝑠 = 𝑃 → ( 𝑠 = 𝑟 ↔ 𝑃 = 𝑟 ) ) |
19 |
17 18
|
bibi12d |
⊢ ( 𝑠 = 𝑃 → ( ( 𝑠 ∥ 𝑁 ↔ 𝑠 = 𝑟 ) ↔ ( 𝑃 ∥ 𝑁 ↔ 𝑃 = 𝑟 ) ) ) |
20 |
|
nfv |
⊢ Ⅎ 𝑠 ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) |
21 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝑠 ∥ 𝑁 ↔ 𝑠 = 𝑟 ) |
22 |
|
breq1 |
⊢ ( 𝑝 = 𝑠 → ( 𝑝 ∥ 𝑁 ↔ 𝑠 ∥ 𝑁 ) ) |
23 |
|
equequ1 |
⊢ ( 𝑝 = 𝑠 → ( 𝑝 = 𝑟 ↔ 𝑠 = 𝑟 ) ) |
24 |
22 23
|
bibi12d |
⊢ ( 𝑝 = 𝑠 → ( ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ↔ ( 𝑠 ∥ 𝑁 ↔ 𝑠 = 𝑟 ) ) ) |
25 |
20 21 24
|
cbvralw |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ↔ ∀ 𝑠 ∈ ℙ ( 𝑠 ∥ 𝑁 ↔ 𝑠 = 𝑟 ) ) |
26 |
25
|
biimpi |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) → ∀ 𝑠 ∈ ℙ ( 𝑠 ∥ 𝑁 ↔ 𝑠 = 𝑟 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → ∀ 𝑠 ∈ ℙ ( 𝑠 ∥ 𝑁 ↔ 𝑠 = 𝑟 ) ) |
28 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → 𝑃 ∈ ℙ ) |
29 |
19 27 28
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → ( 𝑃 ∥ 𝑁 ↔ 𝑃 = 𝑟 ) ) |
30 |
29
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → ( 𝑃 ∥ 𝑁 → 𝑃 = 𝑟 ) ) |
31 |
16 30
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → 𝑃 = 𝑟 ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑃 = 𝑟 ) |
33 |
32
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑟 = 𝑃 ) |
34 |
15 33
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑞 = 𝑃 ) |
35 |
34
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑞 pCnt 𝑁 ) = ( 𝑃 pCnt 𝑁 ) ) |
36 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
37 |
6 36
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
38 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
39 |
|
3re |
⊢ 3 ∈ ℝ |
40 |
39
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
41 |
37
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
42 |
|
3pos |
⊢ 0 < 3 |
43 |
42
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
44 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
45 |
6 44
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
46 |
38 40 41 43 45
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
47 |
37 46
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
48 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
49 |
47 48
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
50 |
|
pcelnn |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) |
51 |
4 49 50
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) |
52 |
7 51
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) |
53 |
52
|
nncnd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℂ ) |
54 |
53
|
mulridd |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝑁 ) · 1 ) = ( 𝑃 pCnt 𝑁 ) ) |
55 |
54
|
eqcomd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) = ( ( 𝑃 pCnt 𝑁 ) · 1 ) ) |
56 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
57 |
56
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
58 |
|
pcidlem |
⊢ ( ( 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = 1 ) |
59 |
4 57 58
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = 1 ) |
60 |
59
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) ) |
61 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
62 |
4 61
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
63 |
62
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
64 |
63
|
exp1d |
⊢ ( 𝜑 → ( 𝑃 ↑ 1 ) = 𝑃 ) |
65 |
64
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = ( 𝑃 pCnt 𝑃 ) ) |
66 |
60 65
|
eqtrd |
⊢ ( 𝜑 → 1 = ( 𝑃 pCnt 𝑃 ) ) |
67 |
66
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝑁 ) · 1 ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) ) |
68 |
55 67
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) ) |
70 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) ) |
71 |
28
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑃 ∈ ℙ ) |
72 |
|
nnq |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℚ ) |
73 |
62 72
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℚ ) |
74 |
62
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
75 |
73 74
|
jca |
⊢ ( 𝜑 → ( 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) → ( 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) ) |
77 |
76
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) ) |
78 |
52
|
nnzd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
81 |
80
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
82 |
81
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
83 |
|
pcexp |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) ) |
84 |
71 77 82 83
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) ) |
85 |
84
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( ( 𝑃 pCnt 𝑁 ) · ( 𝑃 pCnt 𝑃 ) ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
86 |
70 85
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
87 |
34
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → 𝑃 = 𝑞 ) |
88 |
87
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
89 |
86 88
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
90 |
35 89
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 = 𝑟 ) → ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
91 |
|
breq1 |
⊢ ( 𝑠 = 𝑞 → ( 𝑠 ∥ 𝑁 ↔ 𝑞 ∥ 𝑁 ) ) |
92 |
|
equequ1 |
⊢ ( 𝑠 = 𝑞 → ( 𝑠 = 𝑟 ↔ 𝑞 = 𝑟 ) ) |
93 |
91 92
|
bibi12d |
⊢ ( 𝑠 = 𝑞 → ( ( 𝑠 ∥ 𝑁 ↔ 𝑠 = 𝑟 ) ↔ ( 𝑞 ∥ 𝑁 ↔ 𝑞 = 𝑟 ) ) ) |
94 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ∀ 𝑠 ∈ ℙ ( 𝑠 ∥ 𝑁 ↔ 𝑠 = 𝑟 ) ) |
95 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) |
96 |
93 94 95
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ 𝑁 ↔ 𝑞 = 𝑟 ) ) |
97 |
96
|
bicomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 = 𝑟 ↔ 𝑞 ∥ 𝑁 ) ) |
98 |
97
|
notbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( ¬ 𝑞 = 𝑟 ↔ ¬ 𝑞 ∥ 𝑁 ) ) |
99 |
98
|
biimpa |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ¬ 𝑞 ∥ 𝑁 ) |
100 |
95
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑞 ∈ ℙ ) |
101 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
102 |
101
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑁 ∈ ℕ ) |
103 |
|
pceq0 |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑞 pCnt 𝑁 ) = 0 ↔ ¬ 𝑞 ∥ 𝑁 ) ) |
104 |
100 102 103
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( ( 𝑞 pCnt 𝑁 ) = 0 ↔ ¬ 𝑞 ∥ 𝑁 ) ) |
105 |
99 104
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 pCnt 𝑁 ) = 0 ) |
106 |
|
neqne |
⊢ ( ¬ 𝑞 = 𝑟 → 𝑞 ≠ 𝑟 ) |
107 |
106
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑞 ≠ 𝑟 ) |
108 |
16
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑃 ∥ 𝑁 ) |
109 |
28
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑃 ∈ ℙ ) |
110 |
19 94 109
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑃 ∥ 𝑁 ↔ 𝑃 = 𝑟 ) ) |
111 |
110
|
biimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑃 ∥ 𝑁 → 𝑃 = 𝑟 ) ) |
112 |
108 111
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑃 = 𝑟 ) |
113 |
112
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑃 = 𝑟 ) |
114 |
113
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑟 = 𝑃 ) |
115 |
107 114
|
neeqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑞 ≠ 𝑃 ) |
116 |
115
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ¬ 𝑞 = 𝑃 ) |
117 |
|
prmuz2 |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ( ℤ≥ ‘ 2 ) ) |
118 |
117
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ( ℤ≥ ‘ 2 ) ) |
119 |
118
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑞 ∈ ( ℤ≥ ‘ 2 ) ) |
120 |
28
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑃 ∈ ℙ ) |
121 |
|
dvdsprm |
⊢ ( ( 𝑞 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑞 ∥ 𝑃 ↔ 𝑞 = 𝑃 ) ) |
122 |
119 120 121
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 ∥ 𝑃 ↔ 𝑞 = 𝑃 ) ) |
123 |
116 122
|
mtbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ¬ 𝑞 ∥ 𝑃 ) |
124 |
62
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑃 ∈ ℕ ) |
125 |
124
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 𝑃 ∈ ℤ ) |
126 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) |
127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) |
128 |
127
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) |
129 |
128
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) |
130 |
|
prmdvdsexp |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) → ( 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ↔ 𝑞 ∥ 𝑃 ) ) |
131 |
100 125 129 130
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ↔ 𝑞 ∥ 𝑃 ) ) |
132 |
123 131
|
mtbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ¬ 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) |
133 |
120 102
|
pccld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
134 |
124 133
|
nnexpcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ ) |
135 |
|
pceq0 |
⊢ ( ( 𝑞 ∈ ℙ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ ) → ( ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = 0 ↔ ¬ 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
136 |
100 134 135
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = 0 ↔ ¬ 𝑞 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
137 |
132 136
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = 0 ) |
138 |
137
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → 0 = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
139 |
105 138
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 = 𝑟 ) → ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
140 |
90 139
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
141 |
140
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℙ ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
142 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
aks6d1c7lem4 |
⊢ ( 𝜑 → ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |
143 |
|
reu6 |
⊢ ( ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ↔ ∃ 𝑟 ∈ ℙ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) |
144 |
142 143
|
sylib |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℙ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑁 ↔ 𝑝 = 𝑟 ) ) |
145 |
141 144
|
r19.29a |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
146 |
49
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
147 |
62
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
148 |
4 49
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
149 |
147 148
|
nn0expcld |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ0 ) |
150 |
|
pc11 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ0 ) → ( 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) ) |
151 |
146 149 150
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑁 ) = ( 𝑞 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) ) |
152 |
145 151
|
mpbird |
⊢ ( 𝜑 → 𝑁 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) |