Metamath Proof Explorer


Theorem eqreu

Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypothesis eqreu.1 x=Bφψ
Assertion eqreu BAψxAφx=B∃!xAφ

Proof

Step Hyp Ref Expression
1 eqreu.1 x=Bφψ
2 ralbiim xAφx=BxAφx=BxAx=Bφ
3 1 ceqsralv BAxAx=Bφψ
4 3 anbi2d BAxAφx=BxAx=BφxAφx=Bψ
5 2 4 bitrid BAxAφx=BxAφx=Bψ
6 reu6i BAxAφx=B∃!xAφ
7 6 ex BAxAφx=B∃!xAφ
8 5 7 sylbird BAxAφx=Bψ∃!xAφ
9 8 3impib BAxAφx=Bψ∃!xAφ
10 9 3com23 BAψxAφx=B∃!xAφ