Metamath Proof Explorer


Theorem ceqsralv

Description: Restricted quantifier version of ceqsalv . (Contributed by NM, 21-Jun-2013) Avoid ax-9 , ax-12 , ax-ext . (Revised by SN, 8-Sep-2024)

Ref Expression
Hypothesis ceqsralv.2 x=Aφψ
Assertion ceqsralv ABxBx=Aφψ

Proof

Step Hyp Ref Expression
1 ceqsralv.2 x=Aφψ
2 1 pm5.74i x=Aφx=Aψ
3 2 ralbii xBx=AφxBx=Aψ
4 r19.23v xBx=AψxBx=Aψ
5 risset ABxBx=A
6 pm5.5 xBx=AxBx=Aψψ
7 5 6 sylbi ABxBx=Aψψ
8 4 7 bitrid ABxBx=Aψψ
9 3 8 bitrid ABxBx=Aφψ