Metamath Proof Explorer


Theorem ceqsralv

Description: Restricted quantifier version of ceqsalv . (Contributed by NM, 21-Jun-2013) Avoid ax-9 , ax-12 , ax-ext . (Revised by SN, 8-Sep-2024)

Ref Expression
Hypothesis ceqsralv.2 x = A φ ψ
Assertion ceqsralv A B x B x = A φ ψ

Proof

Step Hyp Ref Expression
1 ceqsralv.2 x = A φ ψ
2 1 pm5.74i x = A φ x = A ψ
3 2 ralbii x B x = A φ x B x = A ψ
4 r19.23v x B x = A ψ x B x = A ψ
5 risset A B x B x = A
6 pm5.5 x B x = A x B x = A ψ ψ
7 5 6 sylbi A B x B x = A ψ ψ
8 4 7 bitrid A B x B x = A ψ ψ
9 3 8 bitrid A B x B x = A φ ψ