Metamath Proof Explorer


Theorem ceqsralv

Description: Restricted quantifier version of ceqsalv . (Contributed by NM, 21-Jun-2013) Avoid ax-9 , ax-12 , ax-ext . (Revised by SN, 8-Sep-2024)

Ref Expression
Hypothesis ceqsralv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsralv ( 𝐴𝐵 → ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ceqsralv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 pm5.74i ( ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝑥 = 𝐴𝜓 ) )
3 2 ralbii ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜓 ) )
4 r19.23v ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜓 ) ↔ ( ∃ 𝑥𝐵 𝑥 = 𝐴𝜓 ) )
5 risset ( 𝐴𝐵 ↔ ∃ 𝑥𝐵 𝑥 = 𝐴 )
6 pm5.5 ( ∃ 𝑥𝐵 𝑥 = 𝐴 → ( ( ∃ 𝑥𝐵 𝑥 = 𝐴𝜓 ) ↔ 𝜓 ) )
7 5 6 sylbi ( 𝐴𝐵 → ( ( ∃ 𝑥𝐵 𝑥 = 𝐴𝜓 ) ↔ 𝜓 ) )
8 4 7 bitrid ( 𝐴𝐵 → ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜓 ) ↔ 𝜓 ) )
9 3 8 bitrid ( 𝐴𝐵 → ( ∀ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )