Description: Restricted quantifier version of ceqsalv . (Contributed by NM, 21-Jun-2013) Avoid ax-9 , ax-12 , ax-ext . (Revised by SN, 8-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ceqsralv.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | ceqsralv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsralv.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | pm5.74i | ⊢ ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) |
3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜓 ) ) |
4 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝜓 ) ) | |
5 | risset | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) | |
6 | pm5.5 | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 → ( ( ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) | |
7 | 5 6 | sylbi | ⊢ ( 𝐴 ∈ 𝐵 → ( ( ∃ 𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) |
8 | 4 7 | bitrid | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) |
9 | 3 8 | bitrid | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |