Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsralv.2 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
1
|
pm5.74i |
|- ( ( x = A -> ph ) <-> ( x = A -> ps ) ) |
3 |
2
|
ralbii |
|- ( A. x e. B ( x = A -> ph ) <-> A. x e. B ( x = A -> ps ) ) |
4 |
|
r19.23v |
|- ( A. x e. B ( x = A -> ps ) <-> ( E. x e. B x = A -> ps ) ) |
5 |
|
risset |
|- ( A e. B <-> E. x e. B x = A ) |
6 |
|
pm5.5 |
|- ( E. x e. B x = A -> ( ( E. x e. B x = A -> ps ) <-> ps ) ) |
7 |
5 6
|
sylbi |
|- ( A e. B -> ( ( E. x e. B x = A -> ps ) <-> ps ) ) |
8 |
4 7
|
bitrid |
|- ( A e. B -> ( A. x e. B ( x = A -> ps ) <-> ps ) ) |
9 |
3 8
|
bitrid |
|- ( A e. B -> ( A. x e. B ( x = A -> ph ) <-> ps ) ) |