Step |
Hyp |
Ref |
Expression |
1 |
|
aks5lema.1 |
|- ( ph -> K e. Field ) |
2 |
|
aks5lema.2 |
|- P = ( chr ` K ) |
3 |
|
aks5lema.3 |
|- ( ph -> ( P e. Prime /\ N e. NN /\ P || N ) ) |
4 |
|
aks5lema.9 |
|- B = ( S /s ( S ~QG L ) ) |
5 |
|
aks5lema.10 |
|- L = ( ( RSpan ` S ) ` { ( ( R ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( -g ` S ) ( 1r ` S ) ) } ) |
6 |
|
aks5lema.11 |
|- ( ph -> R e. NN ) |
7 |
|
aks5lema.14 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
8 |
|
aks5lema.15 |
|- S = ( Poly1 ` ( Z/nZ ` N ) ) |
9 |
|
aks5lem5a.13 |
|- ( ph -> A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
10 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) /\ y e. ( ( mulGrp ` K ) PrimRoots R ) ) -> K e. Field ) |
11 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) /\ y e. ( ( mulGrp ` K ) PrimRoots R ) ) -> ( P e. Prime /\ N e. NN /\ P || N ) ) |
12 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) /\ y e. ( ( mulGrp ` K ) PrimRoots R ) ) -> R e. NN ) |
13 |
|
simpr |
|- ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) /\ y e. ( ( mulGrp ` K ) PrimRoots R ) ) -> y e. ( ( mulGrp ` K ) PrimRoots R ) ) |
14 |
|
elfzelz |
|- ( a e. ( 1 ... A ) -> a e. ZZ ) |
15 |
14
|
adantl |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> a e. ZZ ) |
16 |
15
|
adantr |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> a e. ZZ ) |
17 |
16
|
adantr |
|- ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) /\ y e. ( ( mulGrp ` K ) PrimRoots R ) ) -> a e. ZZ ) |
18 |
|
eqid |
|- ( algSc ` S ) = ( algSc ` S ) |
19 |
|
eqid |
|- ( ZRHom ` S ) = ( ZRHom ` S ) |
20 |
|
eqid |
|- ( ZRHom ` ( Z/nZ ` N ) ) = ( ZRHom ` ( Z/nZ ` N ) ) |
21 |
3
|
simp2d |
|- ( ph -> N e. NN ) |
22 |
21
|
adantr |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> N e. NN ) |
23 |
22
|
nnnn0d |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> N e. NN0 ) |
24 |
|
eqid |
|- ( Z/nZ ` N ) = ( Z/nZ ` N ) |
25 |
24
|
zncrng |
|- ( N e. NN0 -> ( Z/nZ ` N ) e. CRing ) |
26 |
23 25
|
syl |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( Z/nZ ` N ) e. CRing ) |
27 |
8 18 19 20 26 15
|
ply1asclzrhval |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) = ( ( ZRHom ` S ) ` a ) ) |
28 |
27
|
oveq2d |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) = ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) |
29 |
28
|
oveq2d |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ) = ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ) |
30 |
29
|
eceq1d |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ) ] ( S ~QG L ) = [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) ) |
31 |
30
|
adantr |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ) ] ( S ~QG L ) = [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) ) |
32 |
|
simpr |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) |
33 |
27
|
eqcomd |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( ZRHom ` S ) ` a ) = ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) |
34 |
33
|
oveq2d |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) = ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ) |
35 |
34
|
eceq1d |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ] ( S ~QG L ) ) |
36 |
35
|
adantr |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ] ( S ~QG L ) ) |
37 |
31 32 36
|
3eqtrd |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ] ( S ~QG L ) ) |
38 |
37
|
adantr |
|- ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) /\ y e. ( ( mulGrp ` K ) PrimRoots R ) ) -> [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( algSc ` S ) ` ( ( ZRHom ` ( Z/nZ ` N ) ) ` a ) ) ) ] ( S ~QG L ) ) |
39 |
10 2 11 4 5 12 7 8 13 17 38
|
aks5lem4a |
|- ( ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) /\ y e. ( ( mulGrp ` K ) PrimRoots R ) ) -> ( N ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) ` ( N ( .g ` ( mulGrp ` K ) ) y ) ) ) |
40 |
39
|
ralrimiva |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( N ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) ` ( N ( .g ` ( mulGrp ` K ) ) y ) ) ) |
41 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
42 |
|
eqid |
|- ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) |
43 |
|
eqid |
|- ( ZRHom ` ( Poly1 ` K ) ) = ( ZRHom ` ( Poly1 ` K ) ) |
44 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
45 |
1
|
fldcrngd |
|- ( ph -> K e. CRing ) |
46 |
45
|
adantr |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> K e. CRing ) |
47 |
41 42 43 44 46 15
|
ply1asclzrhval |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) = ( ( ZRHom ` ( Poly1 ` K ) ) ` a ) ) |
48 |
47
|
oveq2d |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( ZRHom ` ( Poly1 ` K ) ) ` a ) ) ) |
49 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
50 |
|
eqid |
|- ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) |
51 |
41
|
ply1crng |
|- ( K e. CRing -> ( Poly1 ` K ) e. CRing ) |
52 |
45 51
|
syl |
|- ( ph -> ( Poly1 ` K ) e. CRing ) |
53 |
52
|
adantr |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( Poly1 ` K ) e. CRing ) |
54 |
|
crngring |
|- ( ( Poly1 ` K ) e. CRing -> ( Poly1 ` K ) e. Ring ) |
55 |
53 54
|
syl |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( Poly1 ` K ) e. Ring ) |
56 |
55
|
ringgrpd |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( Poly1 ` K ) e. Grp ) |
57 |
46
|
crngringd |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> K e. Ring ) |
58 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
59 |
58 41 49
|
vr1cl |
|- ( K e. Ring -> ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) ) |
60 |
57 59
|
syl |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) ) |
61 |
43
|
zrhrhm |
|- ( ( Poly1 ` K ) e. Ring -> ( ZRHom ` ( Poly1 ` K ) ) e. ( ZZring RingHom ( Poly1 ` K ) ) ) |
62 |
55 61
|
syl |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ZRHom ` ( Poly1 ` K ) ) e. ( ZZring RingHom ( Poly1 ` K ) ) ) |
63 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
64 |
63 49
|
rhmf |
|- ( ( ZRHom ` ( Poly1 ` K ) ) e. ( ZZring RingHom ( Poly1 ` K ) ) -> ( ZRHom ` ( Poly1 ` K ) ) : ZZ --> ( Base ` ( Poly1 ` K ) ) ) |
65 |
62 64
|
syl |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ZRHom ` ( Poly1 ` K ) ) : ZZ --> ( Base ` ( Poly1 ` K ) ) ) |
66 |
65 15
|
ffvelcdmd |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( ZRHom ` ( Poly1 ` K ) ) ` a ) e. ( Base ` ( Poly1 ` K ) ) ) |
67 |
49 50 56 60 66
|
grpcld |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( ZRHom ` ( Poly1 ` K ) ) ` a ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
68 |
48 67
|
eqeltrd |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
69 |
68
|
adantr |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
70 |
22
|
adantr |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> N e. NN ) |
71 |
7 69 70
|
aks6d1c1p1 |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> ( N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( N ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) ` ( N ( .g ` ( mulGrp ` K ) ) y ) ) ) ) |
72 |
40 71
|
mpbird |
|- ( ( ( ph /\ a e. ( 1 ... A ) ) /\ [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) ) -> N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
73 |
72
|
ex |
|- ( ( ph /\ a e. ( 1 ... A ) ) -> ( [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) -> N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
74 |
73
|
ralimdva |
|- ( ph -> ( A. a e. ( 1 ... A ) [ ( N ( .g ` ( mulGrp ` S ) ) ( ( var1 ` ( Z/nZ ` N ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ) ] ( S ~QG L ) = [ ( ( N ( .g ` ( mulGrp ` S ) ) ( var1 ` ( Z/nZ ` N ) ) ) ( +g ` S ) ( ( ZRHom ` S ) ` a ) ) ] ( S ~QG L ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
75 |
9 74
|
mpd |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |