Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
2 |
|
f1f |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
4 |
3
|
ffnd |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
5 |
|
simpll |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
6 |
3
|
frnd |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
7 |
|
df-pss |
⊢ ( ran 𝐹 ⊊ 𝐵 ↔ ( ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ 𝐵 ) ) |
8 |
7
|
baib |
⊢ ( ran 𝐹 ⊆ 𝐵 → ( ran 𝐹 ⊊ 𝐵 ↔ ran 𝐹 ≠ 𝐵 ) ) |
9 |
6 8
|
syl |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 ↔ ran 𝐹 ≠ 𝐵 ) ) |
10 |
|
simplr |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐵 ∈ Fin ) |
11 |
|
relen |
⊢ Rel ≈ |
12 |
11
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
13 |
5 12
|
syl |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ V ) |
14 |
10 13
|
elmapd |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
15 |
3 14
|
mpbird |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ) |
16 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
18 |
|
f1oen3g |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) → 𝐴 ≈ ran 𝐹 ) |
19 |
15 17 18
|
syl2anc |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ ran 𝐹 ) |
20 |
|
php3 |
⊢ ( ( 𝐵 ∈ Fin ∧ ran 𝐹 ⊊ 𝐵 ) → ran 𝐹 ≺ 𝐵 ) |
21 |
20
|
ex |
⊢ ( 𝐵 ∈ Fin → ( ran 𝐹 ⊊ 𝐵 → ran 𝐹 ≺ 𝐵 ) ) |
22 |
10 21
|
syl |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → ran 𝐹 ≺ 𝐵 ) ) |
23 |
|
ensdomtr |
⊢ ( ( 𝐴 ≈ ran 𝐹 ∧ ran 𝐹 ≺ 𝐵 ) → 𝐴 ≺ 𝐵 ) |
24 |
19 22 23
|
syl6an |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
25 |
|
sdomnen |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) |
26 |
24 25
|
syl6 |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
27 |
9 26
|
sylbird |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ≠ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
28 |
27
|
necon4ad |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐴 ≈ 𝐵 → ran 𝐹 = 𝐵 ) ) |
29 |
5 28
|
mpd |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ran 𝐹 = 𝐵 ) |
30 |
|
df-fo |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ) ) |
31 |
4 29 30
|
sylanbrc |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
32 |
|
df-f1o |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) |
33 |
1 31 32
|
sylanbrc |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
34 |
33
|
ex |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |
35 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
36 |
34 35
|
impbid1 |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |