| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  𝐹 : 𝐴 –1-1→ 𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							f1f | 
							⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 4 | 
							
								3
							 | 
							ffnd | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  𝐹  Fn  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  𝐴  ≈  𝐵 )  | 
						
						
							| 6 | 
							
								3
							 | 
							frnd | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ran  𝐹  ⊆  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							df-pss | 
							⊢ ( ran  𝐹  ⊊  𝐵  ↔  ( ran  𝐹  ⊆  𝐵  ∧  ran  𝐹  ≠  𝐵 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							baib | 
							⊢ ( ran  𝐹  ⊆  𝐵  →  ( ran  𝐹  ⊊  𝐵  ↔  ran  𝐹  ≠  𝐵 ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝐹  ⊊  𝐵  ↔  ran  𝐹  ≠  𝐵 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							php3 | 
							⊢ ( ( 𝐵  ∈  Fin  ∧  ran  𝐹  ⊊  𝐵 )  →  ran  𝐹  ≺  𝐵 )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							⊢ ( 𝐵  ∈  Fin  →  ( ran  𝐹  ⊊  𝐵  →  ran  𝐹  ≺  𝐵 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝐹  ⊊  𝐵  →  ran  𝐹  ≺  𝐵 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							enfii | 
							⊢ ( ( 𝐵  ∈  Fin  ∧  𝐴  ≈  𝐵 )  →  𝐴  ∈  Fin )  | 
						
						
							| 14 | 
							
								13
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐴  ∈  Fin )  | 
						
						
							| 15 | 
							
								
							 | 
							f1f1orn | 
							⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 )  | 
						
						
							| 16 | 
							
								
							 | 
							f1oenfi | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 )  →  𝐴  ≈  ran  𝐹 )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							syl2an | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  𝐴  ≈  ran  𝐹 )  | 
						
						
							| 18 | 
							
								
							 | 
							endom | 
							⊢ ( 𝐴  ≈  ran  𝐹  →  𝐴  ≼  ran  𝐹 )  | 
						
						
							| 19 | 
							
								
							 | 
							domsdomtrfi | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≼  ran  𝐹  ∧  ran  𝐹  ≺  𝐵 )  →  𝐴  ≺  𝐵 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl3an2 | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  ran  𝐹  ∧  ran  𝐹  ≺  𝐵 )  →  𝐴  ≺  𝐵 )  | 
						
						
							| 21 | 
							
								20
							 | 
							3expia | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  ran  𝐹 )  →  ( ran  𝐹  ≺  𝐵  →  𝐴  ≺  𝐵 ) )  | 
						
						
							| 22 | 
							
								14 17 21
							 | 
							syl2an2r | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝐹  ≺  𝐵  →  𝐴  ≺  𝐵 ) )  | 
						
						
							| 23 | 
							
								12 22
							 | 
							syld | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝐹  ⊊  𝐵  →  𝐴  ≺  𝐵 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							sdomnen | 
							⊢ ( 𝐴  ≺  𝐵  →  ¬  𝐴  ≈  𝐵 )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							syl6 | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝐹  ⊊  𝐵  →  ¬  𝐴  ≈  𝐵 ) )  | 
						
						
							| 26 | 
							
								9 25
							 | 
							sylbird | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( ran  𝐹  ≠  𝐵  →  ¬  𝐴  ≈  𝐵 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							necon4ad | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐴  ≈  𝐵  →  ran  𝐹  =  𝐵 ) )  | 
						
						
							| 28 | 
							
								5 27
							 | 
							mpd | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ran  𝐹  =  𝐵 )  | 
						
						
							| 29 | 
							
								
							 | 
							df-fo | 
							⊢ ( 𝐹 : 𝐴 –onto→ 𝐵  ↔  ( 𝐹  Fn  𝐴  ∧  ran  𝐹  =  𝐵 ) )  | 
						
						
							| 30 | 
							
								4 28 29
							 | 
							sylanbrc | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  𝐹 : 𝐴 –onto→ 𝐵 )  | 
						
						
							| 31 | 
							
								
							 | 
							df-f1o | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ↔  ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐹 : 𝐴 –onto→ 𝐵 ) )  | 
						
						
							| 32 | 
							
								1 30 31
							 | 
							sylanbrc | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  | 
						
						
							| 33 | 
							
								32
							 | 
							ex | 
							⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							f1of1 | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 –1-1→ 𝐵 )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							impbid1 | 
							⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) )  |