Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -1-1-> B ) |
2 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
3 |
2
|
adantl |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A --> B ) |
4 |
3
|
ffnd |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F Fn A ) |
5 |
|
simpll |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> A ~~ B ) |
6 |
3
|
frnd |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ran F C_ B ) |
7 |
|
df-pss |
|- ( ran F C. B <-> ( ran F C_ B /\ ran F =/= B ) ) |
8 |
7
|
baib |
|- ( ran F C_ B -> ( ran F C. B <-> ran F =/= B ) ) |
9 |
6 8
|
syl |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B <-> ran F =/= B ) ) |
10 |
|
php3 |
|- ( ( B e. Fin /\ ran F C. B ) -> ran F ~< B ) |
11 |
10
|
ex |
|- ( B e. Fin -> ( ran F C. B -> ran F ~< B ) ) |
12 |
11
|
ad2antlr |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> ran F ~< B ) ) |
13 |
|
enfii |
|- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin ) |
14 |
13
|
ancoms |
|- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
15 |
|
f1f1orn |
|- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
16 |
|
f1oenfi |
|- ( ( A e. Fin /\ F : A -1-1-onto-> ran F ) -> A ~~ ran F ) |
17 |
14 15 16
|
syl2an |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> A ~~ ran F ) |
18 |
|
endom |
|- ( A ~~ ran F -> A ~<_ ran F ) |
19 |
|
domsdomtrfi |
|- ( ( A e. Fin /\ A ~<_ ran F /\ ran F ~< B ) -> A ~< B ) |
20 |
18 19
|
syl3an2 |
|- ( ( A e. Fin /\ A ~~ ran F /\ ran F ~< B ) -> A ~< B ) |
21 |
20
|
3expia |
|- ( ( A e. Fin /\ A ~~ ran F ) -> ( ran F ~< B -> A ~< B ) ) |
22 |
14 17 21
|
syl2an2r |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F ~< B -> A ~< B ) ) |
23 |
12 22
|
syld |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> A ~< B ) ) |
24 |
|
sdomnen |
|- ( A ~< B -> -. A ~~ B ) |
25 |
23 24
|
syl6 |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> -. A ~~ B ) ) |
26 |
9 25
|
sylbird |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F =/= B -> -. A ~~ B ) ) |
27 |
26
|
necon4ad |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( A ~~ B -> ran F = B ) ) |
28 |
5 27
|
mpd |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ran F = B ) |
29 |
|
df-fo |
|- ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) |
30 |
4 28 29
|
sylanbrc |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -onto-> B ) |
31 |
|
df-f1o |
|- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
32 |
1 30 31
|
sylanbrc |
|- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -1-1-onto-> B ) |
33 |
32
|
ex |
|- ( ( A ~~ B /\ B e. Fin ) -> ( F : A -1-1-> B -> F : A -1-1-onto-> B ) ) |
34 |
|
f1of1 |
|- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
35 |
33 34
|
impbid1 |
|- ( ( A ~~ B /\ B e. Fin ) -> ( F : A -1-1-> B <-> F : A -1-1-onto-> B ) ) |