| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -1-1-> B ) | 
						
							| 2 |  | f1f |  |-  ( F : A -1-1-> B -> F : A --> B ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A --> B ) | 
						
							| 4 | 3 | ffnd |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F Fn A ) | 
						
							| 5 |  | simpll |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> A ~~ B ) | 
						
							| 6 | 3 | frnd |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ran F C_ B ) | 
						
							| 7 |  | df-pss |  |-  ( ran F C. B <-> ( ran F C_ B /\ ran F =/= B ) ) | 
						
							| 8 | 7 | baib |  |-  ( ran F C_ B -> ( ran F C. B <-> ran F =/= B ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B <-> ran F =/= B ) ) | 
						
							| 10 |  | simplr |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> B e. Fin ) | 
						
							| 11 |  | relen |  |-  Rel ~~ | 
						
							| 12 | 11 | brrelex1i |  |-  ( A ~~ B -> A e. _V ) | 
						
							| 13 | 5 12 | syl |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> A e. _V ) | 
						
							| 14 | 10 13 | elmapd |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( F e. ( B ^m A ) <-> F : A --> B ) ) | 
						
							| 15 | 3 14 | mpbird |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F e. ( B ^m A ) ) | 
						
							| 16 |  | f1f1orn |  |-  ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -1-1-onto-> ran F ) | 
						
							| 18 |  | f1oen3g |  |-  ( ( F e. ( B ^m A ) /\ F : A -1-1-onto-> ran F ) -> A ~~ ran F ) | 
						
							| 19 | 15 17 18 | syl2anc |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> A ~~ ran F ) | 
						
							| 20 |  | php3 |  |-  ( ( B e. Fin /\ ran F C. B ) -> ran F ~< B ) | 
						
							| 21 | 20 | ex |  |-  ( B e. Fin -> ( ran F C. B -> ran F ~< B ) ) | 
						
							| 22 | 10 21 | syl |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> ran F ~< B ) ) | 
						
							| 23 |  | ensdomtr |  |-  ( ( A ~~ ran F /\ ran F ~< B ) -> A ~< B ) | 
						
							| 24 | 19 22 23 | syl6an |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> A ~< B ) ) | 
						
							| 25 |  | sdomnen |  |-  ( A ~< B -> -. A ~~ B ) | 
						
							| 26 | 24 25 | syl6 |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> -. A ~~ B ) ) | 
						
							| 27 | 9 26 | sylbird |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F =/= B -> -. A ~~ B ) ) | 
						
							| 28 | 27 | necon4ad |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( A ~~ B -> ran F = B ) ) | 
						
							| 29 | 5 28 | mpd |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ran F = B ) | 
						
							| 30 |  | df-fo |  |-  ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) | 
						
							| 31 | 4 29 30 | sylanbrc |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -onto-> B ) | 
						
							| 32 |  | df-f1o |  |-  ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) | 
						
							| 33 | 1 31 32 | sylanbrc |  |-  ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -1-1-onto-> B ) | 
						
							| 34 | 33 | ex |  |-  ( ( A ~~ B /\ B e. Fin ) -> ( F : A -1-1-> B -> F : A -1-1-onto-> B ) ) | 
						
							| 35 |  | f1of1 |  |-  ( F : A -1-1-onto-> B -> F : A -1-1-> B ) | 
						
							| 36 | 34 35 | impbid1 |  |-  ( ( A ~~ B /\ B e. Fin ) -> ( F : A -1-1-> B <-> F : A -1-1-onto-> B ) ) |