Step |
Hyp |
Ref |
Expression |
1 |
|
sdomdom |
|- ( B ~< C -> B ~<_ C ) |
2 |
|
domtrfil |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
3 |
1 2
|
syl3an3 |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~<_ C ) |
4 |
|
ensymfib |
|- ( A e. Fin -> ( A ~~ C <-> C ~~ A ) ) |
5 |
4
|
biimpa |
|- ( ( A e. Fin /\ A ~~ C ) -> C ~~ A ) |
6 |
5
|
3adant3 |
|- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> C ~~ A ) |
7 |
|
enfii |
|- ( ( A e. Fin /\ C ~~ A ) -> C e. Fin ) |
8 |
7
|
3adant3 |
|- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> C e. Fin ) |
9 |
|
endom |
|- ( C ~~ A -> C ~<_ A ) |
10 |
|
domtrfi |
|- ( ( A e. Fin /\ C ~<_ A /\ A ~<_ B ) -> C ~<_ B ) |
11 |
9 10
|
syl3an2 |
|- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> C ~<_ B ) |
12 |
8 11
|
jca |
|- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> ( C e. Fin /\ C ~<_ B ) ) |
13 |
6 12
|
syld3an2 |
|- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> ( C e. Fin /\ C ~<_ B ) ) |
14 |
|
domnsymfi |
|- ( ( C e. Fin /\ C ~<_ B ) -> -. B ~< C ) |
15 |
13 14
|
syl |
|- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> -. B ~< C ) |
16 |
15
|
3com23 |
|- ( ( A e. Fin /\ A ~<_ B /\ A ~~ C ) -> -. B ~< C ) |
17 |
16
|
3expia |
|- ( ( A e. Fin /\ A ~<_ B ) -> ( A ~~ C -> -. B ~< C ) ) |
18 |
17
|
con2d |
|- ( ( A e. Fin /\ A ~<_ B ) -> ( B ~< C -> -. A ~~ C ) ) |
19 |
18
|
3impia |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> -. A ~~ C ) |
20 |
|
brsdom |
|- ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) |
21 |
3 19 20
|
sylanbrc |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~< C ) |