| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
|- ( B ~< C -> B ~<_ C ) |
| 2 |
|
domtrfil |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
| 3 |
1 2
|
syl3an3 |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~<_ C ) |
| 4 |
|
ensymfib |
|- ( A e. Fin -> ( A ~~ C <-> C ~~ A ) ) |
| 5 |
4
|
biimpa |
|- ( ( A e. Fin /\ A ~~ C ) -> C ~~ A ) |
| 6 |
5
|
3adant3 |
|- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> C ~~ A ) |
| 7 |
|
enfii |
|- ( ( A e. Fin /\ C ~~ A ) -> C e. Fin ) |
| 8 |
7
|
3adant3 |
|- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> C e. Fin ) |
| 9 |
|
endom |
|- ( C ~~ A -> C ~<_ A ) |
| 10 |
|
domtrfi |
|- ( ( A e. Fin /\ C ~<_ A /\ A ~<_ B ) -> C ~<_ B ) |
| 11 |
9 10
|
syl3an2 |
|- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> C ~<_ B ) |
| 12 |
8 11
|
jca |
|- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> ( C e. Fin /\ C ~<_ B ) ) |
| 13 |
6 12
|
syld3an2 |
|- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> ( C e. Fin /\ C ~<_ B ) ) |
| 14 |
|
domnsymfi |
|- ( ( C e. Fin /\ C ~<_ B ) -> -. B ~< C ) |
| 15 |
13 14
|
syl |
|- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> -. B ~< C ) |
| 16 |
15
|
3com23 |
|- ( ( A e. Fin /\ A ~<_ B /\ A ~~ C ) -> -. B ~< C ) |
| 17 |
16
|
3expia |
|- ( ( A e. Fin /\ A ~<_ B ) -> ( A ~~ C -> -. B ~< C ) ) |
| 18 |
17
|
con2d |
|- ( ( A e. Fin /\ A ~<_ B ) -> ( B ~< C -> -. A ~~ C ) ) |
| 19 |
18
|
3impia |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> -. A ~~ C ) |
| 20 |
|
brsdom |
|- ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) |
| 21 |
3 19 20
|
sylanbrc |
|- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~< C ) |