Metamath Proof Explorer


Theorem submod

Description: The order of an element is the same in a subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by AV, 5-Oct-2020)

Ref Expression
Hypotheses submod.h 𝐻 = ( 𝐺s 𝑌 )
submod.o 𝑂 = ( od ‘ 𝐺 )
submod.p 𝑃 = ( od ‘ 𝐻 )
Assertion submod ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → ( 𝑂𝐴 ) = ( 𝑃𝐴 ) )

Proof

Step Hyp Ref Expression
1 submod.h 𝐻 = ( 𝐺s 𝑌 )
2 submod.o 𝑂 = ( od ‘ 𝐺 )
3 submod.p 𝑃 = ( od ‘ 𝐻 )
4 simpll ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝑌 ∈ ( SubMnd ‘ 𝐺 ) )
5 nnnn0 ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 )
6 5 adantl ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ0 )
7 simplr ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝐴𝑌 )
8 eqid ( .g𝐺 ) = ( .g𝐺 )
9 eqid ( .g𝐻 ) = ( .g𝐻 )
10 8 1 9 submmulg ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑥 ∈ ℕ0𝐴𝑌 ) → ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 𝑥 ( .g𝐻 ) 𝐴 ) )
11 4 6 7 10 syl3anc ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 𝑥 ( .g𝐻 ) 𝐴 ) )
12 eqid ( 0g𝐺 ) = ( 0g𝐺 )
13 1 12 subm0 ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g𝐺 ) = ( 0g𝐻 ) )
14 13 ad2antrr ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( 0g𝐺 ) = ( 0g𝐻 ) )
15 11 14 eqeq12d ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) ↔ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) ) )
16 15 rabbidva ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } )
17 eqeq1 ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } → ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = ∅ ↔ { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } = ∅ ) )
18 infeq1 ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } → inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } , ℝ , < ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } , ℝ , < ) )
19 17 18 ifbieq2d ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } → if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } , ℝ , < ) ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } , ℝ , < ) ) )
20 16 19 syl ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } , ℝ , < ) ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } , ℝ , < ) ) )
21 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
22 21 submss ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) )
23 22 sselda ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) )
24 eqid { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) }
25 21 8 12 2 24 odval ( 𝐴 ∈ ( Base ‘ 𝐺 ) → ( 𝑂𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } , ℝ , < ) ) )
26 23 25 syl ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → ( 𝑂𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) } , ℝ , < ) ) )
27 simpr ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → 𝐴𝑌 )
28 22 adantr ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) )
29 1 21 ressbas2 ( 𝑌 ⊆ ( Base ‘ 𝐺 ) → 𝑌 = ( Base ‘ 𝐻 ) )
30 28 29 syl ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → 𝑌 = ( Base ‘ 𝐻 ) )
31 27 30 eleqtrd ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐻 ) )
32 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
33 eqid ( 0g𝐻 ) = ( 0g𝐻 )
34 eqid { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) }
35 32 9 33 3 34 odval ( 𝐴 ∈ ( Base ‘ 𝐻 ) → ( 𝑃𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } , ℝ , < ) ) )
36 31 35 syl ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → ( 𝑃𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g𝐻 ) 𝐴 ) = ( 0g𝐻 ) } , ℝ , < ) ) )
37 20 26 36 3eqtr4d ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → ( 𝑂𝐴 ) = ( 𝑃𝐴 ) )