| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submod.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑌 ) |
| 2 |
|
submod.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
submod.p |
⊢ 𝑃 = ( od ‘ 𝐻 ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 5 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ0 ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → 𝐴 ∈ 𝑌 ) |
| 8 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 9 |
|
eqid |
⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) |
| 10 |
8 1 9
|
submmulg |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑥 ∈ ℕ0 ∧ 𝐴 ∈ 𝑌 ) → ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) ) |
| 11 |
4 6 7 10
|
syl3anc |
⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 13 |
1 12
|
subm0 |
⊢ ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 15 |
11 14
|
eqeq12d |
⊢ ( ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ↔ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) ) ) |
| 16 |
15
|
rabbidva |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } ) |
| 17 |
|
eqeq1 |
⊢ ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } → ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ ↔ { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ ) ) |
| 18 |
|
infeq1 |
⊢ ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } → inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) |
| 19 |
17 18
|
ifbieq2d |
⊢ ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } → if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) ) |
| 20 |
16 19
|
syl |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 22 |
21
|
submss |
⊢ ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) ) |
| 23 |
22
|
sselda |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 24 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } |
| 25 |
21 8 12 2 24
|
odval |
⊢ ( 𝐴 ∈ ( Base ‘ 𝐺 ) → ( 𝑂 ‘ 𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) ) ) |
| 26 |
23 25
|
syl |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } , ℝ , < ) ) ) |
| 27 |
|
simpr |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐴 ∈ 𝑌 ) |
| 28 |
22
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) ) |
| 29 |
1 21
|
ressbas2 |
⊢ ( 𝑌 ⊆ ( Base ‘ 𝐺 ) → 𝑌 = ( Base ‘ 𝐻 ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑌 = ( Base ‘ 𝐻 ) ) |
| 31 |
27 30
|
eleqtrd |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐻 ) ) |
| 32 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 33 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 34 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } |
| 35 |
32 9 33 3 34
|
odval |
⊢ ( 𝐴 ∈ ( Base ‘ 𝐻 ) → ( 𝑃 ‘ 𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) ) |
| 36 |
31 35
|
syl |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑃 ‘ 𝐴 ) = if ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } = ∅ , 0 , inf ( { 𝑥 ∈ ℕ ∣ ( 𝑥 ( .g ‘ 𝐻 ) 𝐴 ) = ( 0g ‘ 𝐻 ) } , ℝ , < ) ) ) |
| 37 |
20 26 36
|
3eqtr4d |
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) ) |