Metamath Proof Explorer


Theorem submod

Description: The order of an element is the same in a subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by AV, 5-Oct-2020)

Ref Expression
Hypotheses submod.h
|- H = ( G |`s Y )
submod.o
|- O = ( od ` G )
submod.p
|- P = ( od ` H )
Assertion submod
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) )

Proof

Step Hyp Ref Expression
1 submod.h
 |-  H = ( G |`s Y )
2 submod.o
 |-  O = ( od ` G )
3 submod.p
 |-  P = ( od ` H )
4 simpll
 |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> Y e. ( SubMnd ` G ) )
5 nnnn0
 |-  ( x e. NN -> x e. NN0 )
6 5 adantl
 |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> x e. NN0 )
7 simplr
 |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> A e. Y )
8 eqid
 |-  ( .g ` G ) = ( .g ` G )
9 eqid
 |-  ( .g ` H ) = ( .g ` H )
10 8 1 9 submmulg
 |-  ( ( Y e. ( SubMnd ` G ) /\ x e. NN0 /\ A e. Y ) -> ( x ( .g ` G ) A ) = ( x ( .g ` H ) A ) )
11 4 6 7 10 syl3anc
 |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( x ( .g ` G ) A ) = ( x ( .g ` H ) A ) )
12 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
13 1 12 subm0
 |-  ( Y e. ( SubMnd ` G ) -> ( 0g ` G ) = ( 0g ` H ) )
14 13 ad2antrr
 |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( 0g ` G ) = ( 0g ` H ) )
15 11 14 eqeq12d
 |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( ( x ( .g ` G ) A ) = ( 0g ` G ) <-> ( x ( .g ` H ) A ) = ( 0g ` H ) ) )
16 15 rabbidva
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } )
17 eqeq1
 |-  ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) <-> { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) ) )
18 infeq1
 |-  ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) = inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) )
19 17 18 ifbieq2d
 |-  ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) )
20 16 19 syl
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) )
21 eqid
 |-  ( Base ` G ) = ( Base ` G )
22 21 submss
 |-  ( Y e. ( SubMnd ` G ) -> Y C_ ( Base ` G ) )
23 22 sselda
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. ( Base ` G ) )
24 eqid
 |-  { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) }
25 21 8 12 2 24 odval
 |-  ( A e. ( Base ` G ) -> ( O ` A ) = if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) )
26 23 25 syl
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) )
27 simpr
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. Y )
28 22 adantr
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> Y C_ ( Base ` G ) )
29 1 21 ressbas2
 |-  ( Y C_ ( Base ` G ) -> Y = ( Base ` H ) )
30 28 29 syl
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> Y = ( Base ` H ) )
31 27 30 eleqtrd
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. ( Base ` H ) )
32 eqid
 |-  ( Base ` H ) = ( Base ` H )
33 eqid
 |-  ( 0g ` H ) = ( 0g ` H )
34 eqid
 |-  { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) }
35 32 9 33 3 34 odval
 |-  ( A e. ( Base ` H ) -> ( P ` A ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) )
36 31 35 syl
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( P ` A ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) )
37 20 26 36 3eqtr4d
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) )