| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem1.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | unitscyglem1.2 | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | unitscyglem1.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | unitscyglem1.4 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 5 |  | unitscyglem1.5 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) | 
						
							| 6 |  | unitscyglem4.1 | ⊢ ( 𝜑  →  𝐷  ∈  ℕ ) | 
						
							| 7 |  | unitscyglem4.2 | ⊢ ( 𝜑  →  𝐷  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑦 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 | 
						
							| 12 |  | fveqeq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 ) ) | 
						
							| 13 | 8 9 10 11 12 | cbvrabw | ⊢ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } | 
						
							| 14 | 13 | fveq2i | ⊢ ( ♯ ‘ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) ) | 
						
							| 16 | 7 | adantr | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  𝐷  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅  →  𝐷  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 18 | 17 | ancrd | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅  →  ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) ) ) | 
						
							| 19 | 18 | imdistani | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  ( 𝜑  ∧  ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) ) ) | 
						
							| 20 |  | breq1 | ⊢ ( 𝑚  =  𝐷  →  ( 𝑚  ∥  ( ♯ ‘ 𝐵 )  ↔  𝐷  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 21 |  | eqeq2 | ⊢ ( 𝑚  =  𝐷  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 ) ) | 
						
							| 22 | 21 | rabbidv | ⊢ ( 𝑚  =  𝐷  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) | 
						
							| 23 | 22 | neeq1d | ⊢ ( 𝑚  =  𝐷  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  ≠  ∅  ↔  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) ) | 
						
							| 24 | 20 23 | anbi12d | ⊢ ( 𝑚  =  𝐷  →  ( ( 𝑚  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  ≠  ∅ )  ↔  ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) ) ) | 
						
							| 25 | 22 | fveq2d | ⊢ ( 𝑚  =  𝐷  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑚  =  𝐷  →  ( ϕ ‘ 𝑚 )  =  ( ϕ ‘ 𝐷 ) ) | 
						
							| 27 | 25 26 | eqeq12d | ⊢ ( 𝑚  =  𝐷  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 } )  =  ( ϕ ‘ 𝑚 )  ↔  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) ) | 
						
							| 28 | 24 27 | imbi12d | ⊢ ( 𝑚  =  𝐷  →  ( ( ( 𝑚  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 } )  =  ( ϕ ‘ 𝑚 ) )  ↔  ( ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) ) ) | 
						
							| 29 | 1 2 3 4 5 | unitscyglem3 | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℕ ( ( 𝑚  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 } )  =  ( ϕ ‘ 𝑚 ) ) ) | 
						
							| 30 | 28 29 6 | rspcdva | ⊢ ( 𝜑  →  ( ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( 𝜑  ∧  ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) | 
						
							| 32 | 19 31 | syl | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) | 
						
							| 33 | 15 32 | eqtrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) | 
						
							| 34 |  | id | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) | 
						
							| 35 | 34 | necon1bi | ⊢ ( ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝜑  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ ) | 
						
							| 37 | 3 | adantr | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  𝐺  ∈  Grp ) | 
						
							| 38 | 4 | adantr | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  𝐵  ∈  Fin ) | 
						
							| 39 | 1 37 38 | hashfingrpnn | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 40 | 1 2 37 38 39 | grpods | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ♯ ‘ 𝐵 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  ∧  ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) )  →  ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 42 | 41 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  ∧  ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  =  ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  ∧  ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  ↑  𝑥 )  =  ( ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↑  𝑥 ) ) | 
						
							| 44 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  𝐺  ∈  Grp ) | 
						
							| 46 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  𝑙  ∈  ℤ ) | 
						
							| 47 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 49 | 1 47 48 | odcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 51 | 50 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 52 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  𝑥  ∈  𝐵 ) | 
						
							| 53 | 46 51 52 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( 𝑙  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℤ  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 54 | 1 2 | mulgass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑙  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℤ  ∧  𝑥  ∈  𝐵 ) )  →  ( ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↑  𝑥 )  =  ( 𝑙  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ↑  𝑥 ) ) ) | 
						
							| 55 | 45 53 54 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↑  𝑥 )  =  ( 𝑙  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ↑  𝑥 ) ) ) | 
						
							| 56 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 57 | 1 47 2 56 | odid | ⊢ ( 𝑥  ∈  𝐵  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 58 | 52 57 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( 𝑙  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ↑  𝑥 ) )  =  ( 𝑙  ↑  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 60 | 1 2 56 | mulgz | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑙  ∈  ℤ )  →  ( 𝑙  ↑  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 61 | 44 60 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( 𝑙  ↑  ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 62 | 59 61 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( 𝑙  ↑  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ↑  𝑥 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 63 | 55 62 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  →  ( ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  ∧  ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 65 | 43 64 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑙  ∈  ℤ )  ∧  ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 66 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐵  ∈  Fin ) | 
						
							| 67 | 1 47 | oddvds2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin  ∧  𝑥  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 68 | 44 66 48 67 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 69 | 49 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 70 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 71 | 66 70 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 72 | 71 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 73 |  | divides | ⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℤ )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 )  ↔  ∃ 𝑙  ∈  ℤ ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 74 | 69 72 73 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 )  ↔  ∃ 𝑙  ∈  ℤ ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 75 | 68 74 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑙  ∈  ℤ ( 𝑙  ·  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 76 | 65 75 | r19.29a | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( ♯ ‘ 𝐵 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 77 | 76 | rabeqcda | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( ( ♯ ‘ 𝐵 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  =  𝐵 ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( ♯ ‘ 𝐵 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  =  𝐵 ) | 
						
							| 79 | 78 | fveq2d | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ♯ ‘ 𝐵 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 80 | 40 79 | eqtr2d | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  =  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 81 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ ) | 
						
							| 82 |  | nfcv | ⊢ Ⅎ 𝑘 ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 83 |  | fzfid | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∈  Fin ) | 
						
							| 84 |  | ssrab2 | ⊢ { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  ( 1 ... ( ♯ ‘ 𝐵 ) ) | 
						
							| 85 | 84 | a1i | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  ( 1 ... ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 86 | 83 85 | ssfid | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∈  Fin ) | 
						
							| 87 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝐵  ∈  Fin ) | 
						
							| 88 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ⊆  𝐵 | 
						
							| 89 | 88 | a1i | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ⊆  𝐵 ) | 
						
							| 90 | 87 89 | ssfid | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∈  Fin ) | 
						
							| 91 |  | hashcl | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∈  Fin  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℕ0 ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℕ0 ) | 
						
							| 93 | 92 | nn0cnd | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℂ ) | 
						
							| 94 |  | breq1 | ⊢ ( 𝑎  =  ( ♯ ‘ 𝐵 )  →  ( 𝑎  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ♯ ‘ 𝐵 )  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 95 |  | 1zzd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  1  ∈  ℤ ) | 
						
							| 96 | 39 | nnzd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 97 | 39 | nnge1d | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  1  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 98 | 39 | nnred | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 99 | 98 | leidd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 100 | 95 96 96 97 99 | elfzd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 101 |  | iddvds | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℤ  →  ( ♯ ‘ 𝐵 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 102 | 96 101 | syl | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 103 | 94 100 102 | elrabd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 104 |  | eqeq2 | ⊢ ( 𝑘  =  ( ♯ ‘ 𝐵 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 105 | 104 | rabbidv | ⊢ ( 𝑘  =  ( ♯ ‘ 𝐵 )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 106 | 105 | fveq2d | ⊢ ( 𝑘  =  ( ♯ ‘ 𝐵 )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 107 | 81 82 86 93 103 106 | fsumsplit1 | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  +  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) ) | 
						
							| 108 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ⊆  𝐵 | 
						
							| 109 | 108 | a1i | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ⊆  𝐵 ) | 
						
							| 110 | 38 109 | ssfid | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ∈  Fin ) | 
						
							| 111 |  | hashcl | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  ∈  ℕ0 ) | 
						
							| 112 | 110 111 | syl | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  ∈  ℕ0 ) | 
						
							| 113 | 112 | nn0red | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  ∈  ℝ ) | 
						
							| 114 |  | diffi | ⊢ ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∈  Fin  →  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  ∈  Fin ) | 
						
							| 115 | 86 114 | syl | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  ∈  Fin ) | 
						
							| 116 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  𝐵  ∈  Fin ) | 
						
							| 117 | 88 | a1i | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ⊆  𝐵 ) | 
						
							| 118 | 116 117 | ssfid | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∈  Fin ) | 
						
							| 119 | 118 91 | syl | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℕ0 ) | 
						
							| 120 | 115 119 | fsumnn0cl | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℕ0 ) | 
						
							| 121 | 120 | nn0red | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℝ ) | 
						
							| 122 | 39 | phicld | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ϕ ‘ ( ♯ ‘ 𝐵 ) )  ∈  ℕ ) | 
						
							| 123 | 122 | nnred | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ϕ ‘ ( ♯ ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 124 |  | eldifi | ⊢ ( 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  →  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 125 |  | breq1 | ⊢ ( 𝑎  =  𝑘  →  ( 𝑎  ∥  ( ♯ ‘ 𝐵 )  ↔  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 126 | 125 | elrab | ⊢ ( 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ↔  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 127 | 126 | biimpi | ⊢ ( 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  →  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 128 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 129 |  | elfzle1 | ⊢ ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  1  ≤  𝑘 ) | 
						
							| 130 | 128 129 | jca | ⊢ ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 132 | 127 131 | syl | ⊢ ( 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 133 | 124 132 | syl | ⊢ ( 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 134 | 133 | adantl | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 135 |  | elnnz1 | ⊢ ( 𝑘  ∈  ℕ  ↔  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 136 | 134 135 | sylibr | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  𝑘  ∈  ℕ ) | 
						
							| 137 |  | phicl | ⊢ ( 𝑘  ∈  ℕ  →  ( ϕ ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 138 | 136 137 | syl | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  ( ϕ ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 139 | 138 | nnred | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  ( ϕ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 140 | 115 139 | fsumrecl | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 141 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅ )  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝜑 ) | 
						
							| 142 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅ )  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 143 | 141 142 | jca | ⊢ ( ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅ )  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( 𝜑  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 144 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅ )  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 145 | 143 144 | jca | ⊢ ( ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅ )  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 146 |  | fveqeq2 | ⊢ ( 𝑥  =  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷  ↔  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) )  =  𝐷 ) ) | 
						
							| 147 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 148 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐷  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 149 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐷  ∈  ℕ ) | 
						
							| 150 | 149 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐷  ∈  ℤ ) | 
						
							| 151 | 149 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐷  ≠  0 ) | 
						
							| 152 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐵  ∈  Fin ) | 
						
							| 153 | 152 70 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 154 | 153 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 155 |  | dvdsval2 | ⊢ ( ( 𝐷  ∈  ℤ  ∧  𝐷  ≠  0  ∧  ( ♯ ‘ 𝐵 )  ∈  ℤ )  →  ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℤ ) ) | 
						
							| 156 | 150 151 154 155 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℤ ) ) | 
						
							| 157 | 148 156 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℤ ) | 
						
							| 158 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 159 | 1 2 147 157 158 | mulgcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 )  ∈  𝐵 ) | 
						
							| 160 | 153 | nn0cnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 161 | 6 | nncnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 162 | 161 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 163 | 1 147 152 | hashfingrpnn | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 164 | 163 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ≠  0 ) | 
						
							| 165 | 160 160 162 164 151 | divdiv2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) )  =  ( ( ( ♯ ‘ 𝐵 )  ·  𝐷 )  /  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 166 | 162 160 164 | divcan3d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  ·  𝐷 )  /  ( ♯ ‘ 𝐵 ) )  =  𝐷 ) | 
						
							| 167 | 165 166 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐷  =  ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) ) | 
						
							| 168 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 169 | 168 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  =  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 170 | 4 70 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 171 | 170 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 172 | 6 | nnne0d | ⊢ ( 𝜑  →  𝐷  ≠  0 ) | 
						
							| 173 | 171 161 172 | divcan2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 174 | 173 | eqcomd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  =  ( 𝐷  ·  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ♯ ‘ 𝐵 )  =  ( 𝐷  ·  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) ) | 
						
							| 176 | 175 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  =  ( 𝐷  ·  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ♯ ‘ 𝐵 ) )  =  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( 𝐷  ·  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) ) ) | 
						
							| 178 |  | nndivdvds | ⊢ ( ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℕ ) ) | 
						
							| 179 | 163 149 178 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( 𝐷  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℕ ) ) | 
						
							| 180 | 148 179 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℕ ) | 
						
							| 181 | 180 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℕ0 ) | 
						
							| 182 | 181 150 | gcdmultipled | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( 𝐷  ·  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) )  =  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) | 
						
							| 183 | 177 182 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ♯ ‘ 𝐵 ) )  =  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) | 
						
							| 184 | 169 183 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  =  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) ) | 
						
							| 185 | 184 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  =  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) | 
						
							| 186 | 185 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐷 ) )  =  ( ( ♯ ‘ 𝐵 )  /  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) | 
						
							| 187 | 167 186 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐷  =  ( ( ♯ ‘ 𝐵 )  /  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) | 
						
							| 188 | 168 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  =  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) | 
						
							| 189 | 1 47 2 | odmulg | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝐵  ∧  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) ) ) ) | 
						
							| 190 | 147 158 157 189 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) ) ) ) | 
						
							| 191 | 188 190 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  =  ( ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) ) ) ) | 
						
							| 192 | 191 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 193 | 157 | zcnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℂ ) | 
						
							| 194 | 184 193 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 195 | 1 47 159 | odcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) )  ∈  ℕ0 ) | 
						
							| 196 | 195 | nn0cnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) )  ∈  ℂ ) | 
						
							| 197 | 168 154 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 198 | 168 164 | eqnetrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  ≠  0 ) | 
						
							| 199 | 157 197 198 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  ≠  0 ) ) | 
						
							| 200 |  | gcd2n0cl | ⊢ ( ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  ∈  ℤ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  ≠  0 )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  ℕ ) | 
						
							| 201 | 199 200 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ∈  ℕ ) | 
						
							| 202 | 201 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ≠  0 ) | 
						
							| 203 | 160 194 196 202 | divmuld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) )  =  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) )  ↔  ( ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) ) )  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 204 | 192 203 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) )  =  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) ) ) | 
						
							| 205 | 187 204 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 ) )  =  𝐷 ) | 
						
							| 206 | 146 159 205 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 )  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) | 
						
							| 207 |  | ne0i | ⊢ ( ( ( ( ♯ ‘ 𝐵 )  /  𝐷 )  ↑  𝑧 )  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) | 
						
							| 208 | 206 207 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) | 
						
							| 209 | 145 208 | syl | ⊢ ( ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅ )  ∧  𝑧  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) | 
						
							| 210 |  | rabn0 | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅  ↔  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 211 |  | nfv | ⊢ Ⅎ 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) | 
						
							| 212 |  | nfv | ⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) | 
						
							| 213 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑧  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 214 | 211 212 213 | cbvrexw | ⊢ ( ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 )  ↔  ∃ 𝑧  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 215 | 210 214 | bitri | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅  ↔  ∃ 𝑧  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 216 | 215 | biimpi | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅  →  ∃ 𝑧  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 217 | 216 | adantl | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅ )  →  ∃ 𝑧  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 218 | 209 217 | r19.29a | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) | 
						
							| 219 | 218 | ex | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  ≠  ∅  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ ) ) | 
						
							| 220 | 219 | necon4d | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  =  ∅ ) ) | 
						
							| 221 | 220 | imp | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) }  =  ∅ ) | 
						
							| 222 | 221 | fveq2d | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 223 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 224 | 223 | a1i | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ ∅ )  =  0 ) | 
						
							| 225 | 222 224 | eqtrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  =  0 ) | 
						
							| 226 | 122 | nngt0d | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  0  <  ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 227 | 225 226 | eqbrtrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  <  ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 228 |  | eldif | ⊢ ( 𝑧  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  ↔  ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 229 | 228 | biimpi | ⊢ ( 𝑧  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  →  ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 230 | 229 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 231 |  | breq1 | ⊢ ( 𝑎  =  𝑧  →  ( 𝑎  ∥  ( ♯ ‘ 𝐵 )  ↔  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 232 | 231 | elrab | ⊢ ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ↔  ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 233 | 232 | biimpi | ⊢ ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  →  ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 234 | 233 | adantr | ⊢ ( ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } )  →  ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 235 |  | velsn | ⊢ ( 𝑧  ∈  { ( ♯ ‘ 𝐵 ) }  ↔  𝑧  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 236 | 235 | bicomi | ⊢ ( 𝑧  =  ( ♯ ‘ 𝐵 )  ↔  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } ) | 
						
							| 237 | 236 | biimpi | ⊢ ( 𝑧  =  ( ♯ ‘ 𝐵 )  →  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } ) | 
						
							| 238 | 237 | necon3bi | ⊢ ( ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) }  →  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) | 
						
							| 239 | 238 | adantl | ⊢ ( ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } )  →  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) | 
						
							| 240 | 234 239 | jca | ⊢ ( ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } )  →  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 241 | 240 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } ) )  →  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 242 |  | 1zzd | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  1  ∈  ℤ ) | 
						
							| 243 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝐵  ∈  Fin ) | 
						
							| 244 | 243 70 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 245 | 244 | nn0zd | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 246 | 245 242 | zsubcld | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  ( ( ♯ ‘ 𝐵 )  −  1 )  ∈  ℤ ) | 
						
							| 247 |  | elfzelz | ⊢ ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 248 | 247 | adantr | ⊢ ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 249 | 248 | adantr | ⊢ ( ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 250 | 249 | adantl | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ∈  ℤ ) | 
						
							| 251 |  | elfzle1 | ⊢ ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  1  ≤  𝑧 ) | 
						
							| 252 | 251 | adantr | ⊢ ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  →  1  ≤  𝑧 ) | 
						
							| 253 | 252 | adantr | ⊢ ( ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) )  →  1  ≤  𝑧 ) | 
						
							| 254 | 253 | adantl | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  1  ≤  𝑧 ) | 
						
							| 255 |  | elfzle2 | ⊢ ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  𝑧  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 256 | 255 | adantr | ⊢ ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑧  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 257 | 256 | adantr | ⊢ ( ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) )  →  𝑧  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 258 | 257 | adantl | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 259 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) | 
						
							| 260 | 259 | necomd | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  ( ♯ ‘ 𝐵 )  ≠  𝑧 ) | 
						
							| 261 | 258 260 | jca | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  ( 𝑧  ≤  ( ♯ ‘ 𝐵 )  ∧  ( ♯ ‘ 𝐵 )  ≠  𝑧 ) ) | 
						
							| 262 | 250 | zred | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ∈  ℝ ) | 
						
							| 263 | 244 | nn0red | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 264 | 262 263 | ltlend | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  ( 𝑧  <  ( ♯ ‘ 𝐵 )  ↔  ( 𝑧  ≤  ( ♯ ‘ 𝐵 )  ∧  ( ♯ ‘ 𝐵 )  ≠  𝑧 ) ) ) | 
						
							| 265 | 261 264 | mpbird | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  <  ( ♯ ‘ 𝐵 ) ) | 
						
							| 266 | 250 245 | zltlem1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  ( 𝑧  <  ( ♯ ‘ 𝐵 )  ↔  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 267 | 265 266 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 268 | 242 246 250 254 267 | elfzd | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 269 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 270 | 231 268 269 | elrabd | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 271 | 270 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 272 | 271 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } ) )  →  ( ( ( 𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 273 | 241 272 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } ) )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 274 | 273 | ex | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 275 | 274 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  ( ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∧  ¬  𝑧  ∈  { ( ♯ ‘ 𝐵 ) } )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 276 | 230 275 | mpd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 277 | 276 | ex | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 278 | 277 | ssrdv | ⊢ ( 𝜑  →  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  ⊆  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 279 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  1  ∈  ℤ ) | 
						
							| 280 | 170 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 281 | 280 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 282 |  | elfzelz | ⊢ ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 283 | 282 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  𝑧  ∈  ℤ ) | 
						
							| 284 |  | elfzle1 | ⊢ ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  →  1  ≤  𝑧 ) | 
						
							| 285 | 284 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  1  ≤  𝑧 ) | 
						
							| 286 | 283 | zred | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  𝑧  ∈  ℝ ) | 
						
							| 287 | 281 | zred | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 288 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 289 | 287 288 | resubcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  ( ( ♯ ‘ 𝐵 )  −  1 )  ∈  ℝ ) | 
						
							| 290 |  | elfzle2 | ⊢ ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  →  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 291 | 290 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 292 | 287 | lem1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  ( ( ♯ ‘ 𝐵 )  −  1 )  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 293 | 286 289 287 291 292 | letrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  𝑧  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 294 | 279 281 283 285 293 | elfzd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) )  →  𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 295 | 294 | ex | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  →  𝑧  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 296 | 295 | ssrdv | ⊢ ( 𝜑  →  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ⊆  ( 1 ... ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 297 |  | rabss2 | ⊢ ( ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ⊆  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 298 | 296 297 | syl | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 299 | 298 | sseld | ⊢ ( 𝜑  →  ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 300 | 299 | imp | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 301 | 170 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 302 | 301 | nn0red | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 303 | 302 | leidd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 304 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  𝑧  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 305 | 304 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  =  𝑧 ) | 
						
							| 306 | 231 | elrab | ⊢ ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ↔  ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 307 | 306 | biimpi | ⊢ ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  →  ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 308 | 307 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 309 | 291 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 310 | 309 | ex | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 311 | 310 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ( 𝑧  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑧  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 312 | 308 311 | mpd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 313 | 300 233 248 | 3syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑧  ∈  ℤ ) | 
						
							| 314 | 280 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 315 | 313 314 | zltlem1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( 𝑧  <  ( ♯ ‘ 𝐵 )  ↔  𝑧  ≤  ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 316 | 312 315 | mpbird | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑧  <  ( ♯ ‘ 𝐵 ) ) | 
						
							| 317 | 316 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  𝑧  <  ( ♯ ‘ 𝐵 ) ) | 
						
							| 318 | 305 317 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  <  ( ♯ ‘ 𝐵 ) ) | 
						
							| 319 | 302 302 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  <  ( ♯ ‘ 𝐵 )  ↔  ¬  ( ♯ ‘ 𝐵 )  ≤  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 320 | 318 319 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  ¬  ( ♯ ‘ 𝐵 )  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 321 | 303 320 | pm2.21dd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  =  ( ♯ ‘ 𝐵 ) )  →  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) | 
						
							| 322 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  𝑧  ≠  ( ♯ ‘ 𝐵 ) )  →  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) | 
						
							| 323 | 321 322 | pm2.61dane | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑧  ≠  ( ♯ ‘ 𝐵 ) ) | 
						
							| 324 | 300 323 | eldifsnd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑧  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 325 | 324 | ex | ⊢ ( 𝜑  →  ( 𝑧  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  →  𝑧  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ) ) | 
						
							| 326 | 325 | ssrdv | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 327 | 278 326 | eqssd | ⊢ ( 𝜑  →  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } )  =  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 328 | 327 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 329 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∈  Fin ) | 
						
							| 330 |  | ssrab2 | ⊢ { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 331 | 330 | a1i | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 332 | 329 331 | ssfid | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∈  Fin ) | 
						
							| 333 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝐵  ∈  Fin ) | 
						
							| 334 | 88 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ⊆  𝐵 ) | 
						
							| 335 | 333 334 | ssfid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∈  Fin ) | 
						
							| 336 | 335 91 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℕ0 ) | 
						
							| 337 | 336 | nn0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℝ ) | 
						
							| 338 | 125 | elrab | ⊢ ( 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ↔  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 339 | 338 | biimpi | ⊢ ( 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  →  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 340 | 339 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 341 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 342 |  | elfzle1 | ⊢ ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  →  1  ≤  𝑘 ) | 
						
							| 343 | 341 342 | jca | ⊢ ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 344 | 343 | adantr | ⊢ ( ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 345 | 344 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 346 | 345 135 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 347 | 346 | ex | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑘  ∈  ℕ ) ) | 
						
							| 348 | 347 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑘  ∈  ℕ ) ) | 
						
							| 349 | 340 348 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑘  ∈  ℕ ) | 
						
							| 350 | 349 | phicld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ϕ ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 351 | 350 | nnred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ϕ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 352 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  𝜑 ) | 
						
							| 353 | 338 | biimpri | ⊢ ( ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 354 | 353 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 355 | 354 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 356 | 352 355 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) ) | 
						
							| 357 | 356 337 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℝ ) | 
						
							| 358 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) | 
						
							| 359 | 356 358 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) | 
						
							| 360 | 340 | simprd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 361 | 360 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 362 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) | 
						
							| 363 | 361 362 | jca | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) | 
						
							| 364 |  | breq1 | ⊢ ( 𝑚  =  𝑘  →  ( 𝑚  ∥  ( ♯ ‘ 𝐵 )  ↔  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 365 |  | eqeq2 | ⊢ ( 𝑚  =  𝑘  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 ) ) | 
						
							| 366 | 365 | rabbidv | ⊢ ( 𝑚  =  𝑘  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 367 | 366 | neeq1d | ⊢ ( 𝑚  =  𝑘  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  ≠  ∅  ↔  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) | 
						
							| 368 | 364 367 | anbi12d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝑚  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  ≠  ∅ )  ↔  ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) ) | 
						
							| 369 | 366 | fveq2d | ⊢ ( 𝑚  =  𝑘  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 370 |  | fveq2 | ⊢ ( 𝑚  =  𝑘  →  ( ϕ ‘ 𝑚 )  =  ( ϕ ‘ 𝑘 ) ) | 
						
							| 371 | 369 370 | eqeq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 } )  =  ( ϕ ‘ 𝑚 )  ↔  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 372 | 368 371 | imbi12d | ⊢ ( 𝑚  =  𝑘  →  ( ( ( 𝑚  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 } )  =  ( ϕ ‘ 𝑚 ) )  ↔  ( ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) ) | 
						
							| 373 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ∀ 𝑚  ∈  ℕ ( ( 𝑚  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑚 } )  =  ( ϕ ‘ 𝑚 ) ) ) | 
						
							| 374 | 372 373 349 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 375 | 374 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 376 | 363 375 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) | 
						
							| 377 | 359 376 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) | 
						
							| 378 | 357 377 | eqled | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  ( ϕ ‘ 𝑘 ) ) | 
						
							| 379 |  | id | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) | 
						
							| 380 | 379 | necon1bi | ⊢ ( ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  =  ∅ ) | 
						
							| 381 | 380 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  =  ∅ ) | 
						
							| 382 | 381 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 383 | 223 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ ∅ )  =  0 ) | 
						
							| 384 | 382 383 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  0 ) | 
						
							| 385 | 346 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  𝑘  ∈  ℕ ) | 
						
							| 386 | 385 | phicld | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ϕ ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 387 | 386 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ϕ ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 388 | 387 | nn0ge0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  0  ≤  ( ϕ ‘ 𝑘 ) ) | 
						
							| 389 | 384 388 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  ( ϕ ‘ 𝑘 ) ) | 
						
							| 390 | 378 389 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  ( ϕ ‘ 𝑘 ) ) | 
						
							| 391 | 390 | ex | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 392 | 391 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ( 𝑘  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 393 | 340 392 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  ( ϕ ‘ 𝑘 ) ) | 
						
							| 394 | 332 337 351 393 | fsumle | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) | 
						
							| 395 | 327 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 )  =  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) | 
						
							| 396 | 395 | eqcomd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 )  =  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) | 
						
							| 397 | 394 396 | breqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ( ♯ ‘ 𝐵 )  −  1 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) | 
						
							| 398 | 328 397 | eqbrtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) | 
						
							| 399 | 398 | adantr | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ≤  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) | 
						
							| 400 | 113 121 123 140 227 399 | ltleaddd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  +  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) )  <  ( ( ϕ ‘ ( ♯ ‘ 𝐵 ) )  +  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 401 |  | nfcv | ⊢ Ⅎ 𝑘 ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) | 
						
							| 402 |  | simpll | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝜑 ) | 
						
							| 403 | 127 | adantl | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 404 | 402 403 | jca | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 405 | 131 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 406 | 405 | adantl | ⊢ ( ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 407 | 406 135 | sylibr | ⊢ ( ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  ∧  ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 408 | 407 | ex | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝑘  ∈  ℕ ) ) | 
						
							| 409 | 404 408 | mpd | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  𝑘  ∈  ℕ ) | 
						
							| 410 | 409 | phicld | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ϕ ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 411 | 410 | nncnd | ⊢ ( ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } )  →  ( ϕ ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 412 |  | fveq2 | ⊢ ( 𝑘  =  ( ♯ ‘ 𝐵 )  →  ( ϕ ‘ 𝑘 )  =  ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 413 | 81 401 86 411 103 412 | fsumsplit1 | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 )  =  ( ( ϕ ‘ ( ♯ ‘ 𝐵 ) )  +  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 414 | 400 413 | breqtrrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) } )  +  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ∖  { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) )  <  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) | 
						
							| 415 | 107 414 | eqbrtrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  <  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) | 
						
							| 416 |  | elfzelz | ⊢ ( 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  𝑎  ∈  ℤ ) | 
						
							| 417 |  | elfzle1 | ⊢ ( 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  1  ≤  𝑎 ) | 
						
							| 418 | 416 417 | jca | ⊢ ( 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  →  ( 𝑎  ∈  ℤ  ∧  1  ≤  𝑎 ) ) | 
						
							| 419 | 418 | adantr | ⊢ ( ( 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) )  →  ( 𝑎  ∈  ℤ  ∧  1  ≤  𝑎 ) ) | 
						
							| 420 | 419 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) )  →  ( 𝑎  ∈  ℤ  ∧  1  ≤  𝑎 ) ) | 
						
							| 421 |  | elnnz1 | ⊢ ( 𝑎  ∈  ℕ  ↔  ( 𝑎  ∈  ℤ  ∧  1  ≤  𝑎 ) ) | 
						
							| 422 | 420 421 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝑎  ∈  ℕ ) | 
						
							| 423 | 422 | rabss3d | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 424 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝜑 ) | 
						
							| 425 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝑎  ∈  ℕ ) | 
						
							| 426 | 424 425 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) )  →  ( 𝜑  ∧  𝑎  ∈  ℕ ) ) | 
						
							| 427 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 428 | 426 427 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) )  →  ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 429 |  | 1zzd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) )  →  1  ∈  ℤ ) | 
						
							| 430 | 280 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 431 | 430 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 432 | 425 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑎  ∈  ℕ ) | 
						
							| 433 | 432 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑎  ∈  ℤ ) | 
						
							| 434 | 432 | nnge1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) )  →  1  ≤  𝑎 ) | 
						
							| 435 |  | nnz | ⊢ ( 𝑎  ∈  ℕ  →  𝑎  ∈  ℤ ) | 
						
							| 436 | 435 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ )  →  𝑎  ∈  ℤ ) | 
						
							| 437 | 1 3 4 | hashfingrpnn | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 438 | 437 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 439 |  | dvdsle | ⊢ ( ( 𝑎  ∈  ℤ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℕ )  →  ( 𝑎  ∥  ( ♯ ‘ 𝐵 )  →  𝑎  ≤  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 440 | 436 438 439 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ )  →  ( 𝑎  ∥  ( ♯ ‘ 𝐵 )  →  𝑎  ≤  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 441 | 440 | imp | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑎  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 442 | 429 431 433 434 441 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 443 | 428 442 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑎  ∥  ( ♯ ‘ 𝐵 ) ) )  →  𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 444 | 443 | rabss3d | ⊢ ( 𝜑  →  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  ⊆  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 445 | 423 444 | eqssd | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  =  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 446 | 445 | adantr | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) }  =  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ) | 
						
							| 447 | 446 | sumeq1d | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 )  =  Σ 𝑘  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) | 
						
							| 448 | 415 447 | breqtrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  <  Σ 𝑘  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) | 
						
							| 449 |  | phisum | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℕ  →  Σ 𝑘  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 450 | 39 449 | syl | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 451 | 448 450 | breqtrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( ♯ ‘ 𝐵 ) )  ∣  𝑎  ∥  ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  <  ( ♯ ‘ 𝐵 ) ) | 
						
							| 452 | 80 451 | eqbrtrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  <  ( ♯ ‘ 𝐵 ) ) | 
						
							| 453 | 170 | adantr | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 454 | 453 | nn0red | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 455 | 454 | ltnrd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ¬  ( ♯ ‘ 𝐵 )  <  ( ♯ ‘ 𝐵 ) ) | 
						
							| 456 | 452 455 | pm2.21dd | ⊢ ( ( 𝜑  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅ )  →  ( ♯ ‘ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) | 
						
							| 457 | 456 | ex | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅  →  ( ♯ ‘ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) ) | 
						
							| 458 | 457 | adantr | ⊢ ( ( 𝜑  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  =  ∅  →  ( ♯ ‘ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) ) | 
						
							| 459 | 36 458 | mpd | ⊢ ( ( 𝜑  ∧  ¬  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) | 
						
							| 460 | 33 459 | pm2.61dan | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑦  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) |