| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitscyglem1.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
unitscyglem1.2 |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 3 |
|
unitscyglem1.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 4 |
|
unitscyglem1.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 5 |
|
unitscyglem1.5 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) |
| 6 |
|
unitscyglem4.1 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
| 7 |
|
unitscyglem4.2 |
⊢ ( 𝜑 → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 10 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 |
| 11 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 |
| 12 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 ) ) |
| 13 |
8 9 10 11 12
|
cbvrabw |
⊢ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } |
| 14 |
13
|
fveq2i |
⊢ ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) |
| 16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) |
| 17 |
16
|
ex |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 18 |
17
|
ancrd |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) ) |
| 19 |
18
|
imdistani |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( 𝜑 ∧ ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) ) |
| 20 |
|
breq1 |
⊢ ( 𝑚 = 𝐷 → ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 21 |
|
eqeq2 |
⊢ ( 𝑚 = 𝐷 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 ) ) |
| 22 |
21
|
rabbidv |
⊢ ( 𝑚 = 𝐷 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) |
| 23 |
22
|
neeq1d |
⊢ ( 𝑚 = 𝐷 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) |
| 24 |
20 23
|
anbi12d |
⊢ ( 𝑚 = 𝐷 → ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) ↔ ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) ) |
| 25 |
22
|
fveq2d |
⊢ ( 𝑚 = 𝐷 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑚 = 𝐷 → ( ϕ ‘ 𝑚 ) = ( ϕ ‘ 𝐷 ) ) |
| 27 |
25 26
|
eqeq12d |
⊢ ( 𝑚 = 𝐷 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
| 28 |
24 27
|
imbi12d |
⊢ ( 𝑚 = 𝐷 → ( ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ) ↔ ( ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) ) |
| 29 |
1 2 3 4 5
|
unitscyglem3 |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ) ) |
| 30 |
28 29 6
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
| 31 |
30
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
| 32 |
19 31
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
| 33 |
15 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
| 34 |
|
id |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
| 35 |
34
|
necon1bi |
⊢ ( ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) |
| 37 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 𝐺 ∈ Grp ) |
| 38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 𝐵 ∈ Fin ) |
| 39 |
1 37 38
|
hashfingrpnn |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 40 |
1 2 37 38 39
|
grpods |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
| 41 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 42 |
41
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) ) |
| 44 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → 𝐺 ∈ Grp ) |
| 46 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → 𝑙 ∈ ℤ ) |
| 47 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 49 |
1 47 48
|
odcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 51 |
50
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ) |
| 52 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → 𝑥 ∈ 𝐵 ) |
| 53 |
46 51 52
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ) |
| 54 |
1 2
|
mulgass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑙 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) = ( 𝑙 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) ) ) |
| 55 |
45 53 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) = ( 𝑙 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) ) ) |
| 56 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 57 |
1 47 2 56
|
odid |
⊢ ( 𝑥 ∈ 𝐵 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 58 |
52 57
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 59 |
58
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) ) = ( 𝑙 ↑ ( 0g ‘ 𝐺 ) ) ) |
| 60 |
1 2 56
|
mulgz |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ↑ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 61 |
44 60
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ↑ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 62 |
59 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 63 |
55 62
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 65 |
43 64
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 66 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ Fin ) |
| 67 |
1 47
|
oddvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 68 |
44 66 48 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 69 |
49
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ) |
| 70 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 71 |
66 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 72 |
71
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 73 |
|
divides |
⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ↔ ∃ 𝑙 ∈ ℤ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) ) |
| 74 |
69 72 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ↔ ∃ 𝑙 ∈ ℤ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) ) |
| 75 |
68 74
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑙 ∈ ℤ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 76 |
65 75
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 77 |
76
|
rabeqcda |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = 𝐵 ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = 𝐵 ) |
| 79 |
78
|
fveq2d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ 𝐵 ) ) |
| 80 |
40 79
|
eqtr2d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 81 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) |
| 82 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) |
| 83 |
|
fzfid |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ∈ Fin ) |
| 84 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) |
| 85 |
84
|
a1i |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 86 |
83 85
|
ssfid |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∈ Fin ) |
| 87 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝐵 ∈ Fin ) |
| 88 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 |
| 89 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 ) |
| 90 |
87 89
|
ssfid |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin ) |
| 91 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
| 92 |
90 91
|
syl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
| 93 |
92
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℂ ) |
| 94 |
|
breq1 |
⊢ ( 𝑎 = ( ♯ ‘ 𝐵 ) → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 95 |
|
1zzd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 1 ∈ ℤ ) |
| 96 |
39
|
nnzd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 97 |
39
|
nnge1d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 1 ≤ ( ♯ ‘ 𝐵 ) ) |
| 98 |
39
|
nnred |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 99 |
98
|
leidd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 100 |
95 96 96 97 99
|
elfzd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 101 |
|
iddvds |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℤ → ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 102 |
96 101
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 103 |
94 100 102
|
elrabd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 104 |
|
eqeq2 |
⊢ ( 𝑘 = ( ♯ ‘ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) ) |
| 105 |
104
|
rabbidv |
⊢ ( 𝑘 = ( ♯ ‘ 𝐵 ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) |
| 106 |
105
|
fveq2d |
⊢ ( 𝑘 = ( ♯ ‘ 𝐵 ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) ) |
| 107 |
81 82 86 93 103 106
|
fsumsplit1 |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) ) |
| 108 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ⊆ 𝐵 |
| 109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ⊆ 𝐵 ) |
| 110 |
38 109
|
ssfid |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ∈ Fin ) |
| 111 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) ∈ ℕ0 ) |
| 112 |
110 111
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) ∈ ℕ0 ) |
| 113 |
112
|
nn0red |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) ∈ ℝ ) |
| 114 |
|
diffi |
⊢ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∈ Fin → ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ∈ Fin ) |
| 115 |
86 114
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ∈ Fin ) |
| 116 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → 𝐵 ∈ Fin ) |
| 117 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 ) |
| 118 |
116 117
|
ssfid |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin ) |
| 119 |
118 91
|
syl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
| 120 |
115 119
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
| 121 |
120
|
nn0red |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℝ ) |
| 122 |
39
|
phicld |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℕ ) |
| 123 |
122
|
nnred |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℝ ) |
| 124 |
|
eldifi |
⊢ ( 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) → 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 125 |
|
breq1 |
⊢ ( 𝑎 = 𝑘 → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 126 |
125
|
elrab |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ↔ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 127 |
126
|
biimpi |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 128 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 𝑘 ∈ ℤ ) |
| 129 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑘 ) |
| 130 |
128 129
|
jca |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 131 |
130
|
adantr |
⊢ ( ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 132 |
127 131
|
syl |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 133 |
124 132
|
syl |
⊢ ( 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 134 |
133
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 135 |
|
elnnz1 |
⊢ ( 𝑘 ∈ ℕ ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 136 |
134 135
|
sylibr |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → 𝑘 ∈ ℕ ) |
| 137 |
|
phicl |
⊢ ( 𝑘 ∈ ℕ → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
| 138 |
136 137
|
syl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
| 139 |
138
|
nnred |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( ϕ ‘ 𝑘 ) ∈ ℝ ) |
| 140 |
115 139
|
fsumrecl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ∈ ℝ ) |
| 141 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝜑 ) |
| 142 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 143 |
141 142
|
jca |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ) |
| 144 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
| 145 |
143 144
|
jca |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) ) |
| 146 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 ↔ ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) = 𝐷 ) ) |
| 147 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 148 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) |
| 149 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ∈ ℕ ) |
| 150 |
149
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ∈ ℤ ) |
| 151 |
149
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ≠ 0 ) |
| 152 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
| 153 |
152 70
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 154 |
153
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 155 |
|
dvdsval2 |
⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ) ) |
| 156 |
150 151 154 155
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ) ) |
| 157 |
148 156
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ) |
| 158 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 159 |
1 2 147 157 158
|
mulgcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ∈ 𝐵 ) |
| 160 |
153
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 161 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 162 |
161
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ∈ ℂ ) |
| 163 |
1 147 152
|
hashfingrpnn |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 164 |
163
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ≠ 0 ) |
| 165 |
160 160 162 164 151
|
divdiv2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) = ( ( ( ♯ ‘ 𝐵 ) · 𝐷 ) / ( ♯ ‘ 𝐵 ) ) ) |
| 166 |
162 160 164
|
divcan3d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) · 𝐷 ) / ( ♯ ‘ 𝐵 ) ) = 𝐷 ) |
| 167 |
165 166
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 = ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) |
| 168 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
| 169 |
168
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ♯ ‘ 𝐵 ) ) ) |
| 170 |
4 70
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 171 |
170
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 172 |
6
|
nnne0d |
⊢ ( 𝜑 → 𝐷 ≠ 0 ) |
| 173 |
171 161 172
|
divcan2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 174 |
173
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) = ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) |
| 176 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) |
| 177 |
176
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) ) |
| 178 |
|
nndivdvds |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℕ ) ) |
| 179 |
163 149 178
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℕ ) ) |
| 180 |
148 179
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℕ ) |
| 181 |
180
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℕ0 ) |
| 182 |
181 150
|
gcdmultipled |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) = ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) |
| 183 |
177 182
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) |
| 184 |
169 183
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) |
| 185 |
184
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) = ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 186 |
185
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) = ( ( ♯ ‘ 𝐵 ) / ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 187 |
167 186
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 = ( ( ♯ ‘ 𝐵 ) / ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 188 |
168
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) |
| 189 |
1 47 2
|
odmulg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) ) |
| 190 |
147 158 157 189
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) ) |
| 191 |
188 190
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) ) |
| 192 |
191
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 193 |
157
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℂ ) |
| 194 |
184 193
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ ℂ ) |
| 195 |
1 47 159
|
odcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ∈ ℕ0 ) |
| 196 |
195
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ∈ ℂ ) |
| 197 |
168 154
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∈ ℤ ) |
| 198 |
168 164
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ≠ 0 ) |
| 199 |
157 197 198
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ≠ 0 ) ) |
| 200 |
|
gcd2n0cl |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ≠ 0 ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ ℕ ) |
| 201 |
199 200
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ ℕ ) |
| 202 |
201
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ≠ 0 ) |
| 203 |
160 194 196 202
|
divmuld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ↔ ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) = ( ♯ ‘ 𝐵 ) ) ) |
| 204 |
192 203
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) |
| 205 |
187 204
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) = 𝐷 ) |
| 206 |
146 159 205
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) |
| 207 |
|
ne0i |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
| 208 |
206 207
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
| 209 |
145 208
|
syl |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
| 210 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) |
| 211 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) |
| 212 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) |
| 213 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑧 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) ) |
| 214 |
211 212 213
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
| 215 |
210 214
|
bitri |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ↔ ∃ 𝑧 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
| 216 |
215
|
biimpi |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ → ∃ 𝑧 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
| 217 |
216
|
adantl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) → ∃ 𝑧 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
| 218 |
209 217
|
r19.29a |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
| 219 |
218
|
ex |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) |
| 220 |
219
|
necon4d |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } = ∅ ) ) |
| 221 |
220
|
imp |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } = ∅ ) |
| 222 |
221
|
fveq2d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) = ( ♯ ‘ ∅ ) ) |
| 223 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 224 |
223
|
a1i |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ ∅ ) = 0 ) |
| 225 |
222 224
|
eqtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) = 0 ) |
| 226 |
122
|
nngt0d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 0 < ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 227 |
225 226
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) < ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 228 |
|
eldif |
⊢ ( 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ↔ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) |
| 229 |
228
|
biimpi |
⊢ ( 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) → ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) |
| 230 |
229
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) |
| 231 |
|
breq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 232 |
231
|
elrab |
⊢ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ↔ ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 233 |
232
|
biimpi |
⊢ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 234 |
233
|
adantr |
⊢ ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 235 |
|
velsn |
⊢ ( 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ↔ 𝑧 = ( ♯ ‘ 𝐵 ) ) |
| 236 |
235
|
bicomi |
⊢ ( 𝑧 = ( ♯ ‘ 𝐵 ) ↔ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) |
| 237 |
236
|
biimpi |
⊢ ( 𝑧 = ( ♯ ‘ 𝐵 ) → 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) |
| 238 |
237
|
necon3bi |
⊢ ( ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
| 239 |
238
|
adantl |
⊢ ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
| 240 |
234 239
|
jca |
⊢ ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) |
| 241 |
240
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) → ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) |
| 242 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 1 ∈ ℤ ) |
| 243 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝐵 ∈ Fin ) |
| 244 |
243 70
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 245 |
244
|
nn0zd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 246 |
245 242
|
zsubcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℤ ) |
| 247 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ ℤ ) |
| 248 |
247
|
adantr |
⊢ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ ℤ ) |
| 249 |
248
|
adantr |
⊢ ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ ℤ ) |
| 250 |
249
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∈ ℤ ) |
| 251 |
|
elfzle1 |
⊢ ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑧 ) |
| 252 |
251
|
adantr |
⊢ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑧 ) |
| 253 |
252
|
adantr |
⊢ ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑧 ) |
| 254 |
253
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 1 ≤ 𝑧 ) |
| 255 |
|
elfzle2 |
⊢ ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
| 256 |
255
|
adantr |
⊢ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
| 257 |
256
|
adantr |
⊢ ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
| 258 |
257
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
| 259 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
| 260 |
259
|
necomd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) ≠ 𝑧 ) |
| 261 |
258 260
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑧 ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ 𝑧 ) ) |
| 262 |
250
|
zred |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∈ ℝ ) |
| 263 |
244
|
nn0red |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 264 |
262 263
|
ltlend |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑧 < ( ♯ ‘ 𝐵 ) ↔ ( 𝑧 ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ 𝑧 ) ) ) |
| 265 |
261 264
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 < ( ♯ ‘ 𝐵 ) ) |
| 266 |
250 245
|
zltlem1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑧 < ( ♯ ‘ 𝐵 ) ↔ 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 267 |
265 266
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 268 |
242 246 250 254 267
|
elfzd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 269 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) |
| 270 |
231 268 269
|
elrabd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 271 |
270
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
| 272 |
271
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) → ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
| 273 |
241 272
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 274 |
273
|
ex |
⊢ ( 𝜑 → ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
| 275 |
274
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
| 276 |
230 275
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 277 |
276
|
ex |
⊢ ( 𝜑 → ( 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
| 278 |
277
|
ssrdv |
⊢ ( 𝜑 → ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ⊆ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 279 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 1 ∈ ℤ ) |
| 280 |
170
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 281 |
280
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 282 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 𝑧 ∈ ℤ ) |
| 283 |
282
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ∈ ℤ ) |
| 284 |
|
elfzle1 |
⊢ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 1 ≤ 𝑧 ) |
| 285 |
284
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 1 ≤ 𝑧 ) |
| 286 |
283
|
zred |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ∈ ℝ ) |
| 287 |
281
|
zred |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 288 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 1 ∈ ℝ ) |
| 289 |
287 288
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℝ ) |
| 290 |
|
elfzle2 |
⊢ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 291 |
290
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 292 |
287
|
lem1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ♯ ‘ 𝐵 ) − 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 293 |
286 289 287 291 292
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
| 294 |
279 281 283 285 293
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 295 |
294
|
ex |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) ) |
| 296 |
295
|
ssrdv |
⊢ ( 𝜑 → ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 297 |
|
rabss2 |
⊢ ( ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 298 |
296 297
|
syl |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 299 |
298
|
sseld |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
| 300 |
299
|
imp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 301 |
170
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 302 |
301
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 303 |
302
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 304 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → 𝑧 = ( ♯ ‘ 𝐵 ) ) |
| 305 |
304
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = 𝑧 ) |
| 306 |
231
|
elrab |
⊢ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ↔ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 307 |
306
|
biimpi |
⊢ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 308 |
307
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 309 |
291
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 310 |
309
|
ex |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 311 |
310
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 312 |
308 311
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 313 |
300 233 248
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ ℤ ) |
| 314 |
280
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 315 |
313 314
|
zltlem1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝑧 < ( ♯ ‘ 𝐵 ) ↔ 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 316 |
312 315
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 < ( ♯ ‘ 𝐵 ) ) |
| 317 |
316
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → 𝑧 < ( ♯ ‘ 𝐵 ) ) |
| 318 |
305 317
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐵 ) ) |
| 319 |
302 302
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐵 ) ↔ ¬ ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 320 |
318 319
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ¬ ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 321 |
303 320
|
pm2.21dd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
| 322 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
| 323 |
321 322
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
| 324 |
300 323
|
eldifsnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) |
| 325 |
324
|
ex |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) ) |
| 326 |
325
|
ssrdv |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) |
| 327 |
278 326
|
eqssd |
⊢ ( 𝜑 → ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) = { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 328 |
327
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 329 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∈ Fin ) |
| 330 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 331 |
330
|
a1i |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 332 |
329 331
|
ssfid |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∈ Fin ) |
| 333 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝐵 ∈ Fin ) |
| 334 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 ) |
| 335 |
333 334
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin ) |
| 336 |
335 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
| 337 |
336
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℝ ) |
| 338 |
125
|
elrab |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ↔ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 339 |
338
|
biimpi |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 340 |
339
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 341 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 𝑘 ∈ ℤ ) |
| 342 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 1 ≤ 𝑘 ) |
| 343 |
341 342
|
jca |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 344 |
343
|
adantr |
⊢ ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 345 |
344
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 346 |
345 135
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑘 ∈ ℕ ) |
| 347 |
346
|
ex |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑘 ∈ ℕ ) ) |
| 348 |
347
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑘 ∈ ℕ ) ) |
| 349 |
340 348
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑘 ∈ ℕ ) |
| 350 |
349
|
phicld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
| 351 |
350
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ϕ ‘ 𝑘 ) ∈ ℝ ) |
| 352 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 𝜑 ) |
| 353 |
338
|
biimpri |
⊢ ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 354 |
353
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 355 |
354
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 356 |
352 355
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
| 357 |
356 337
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℝ ) |
| 358 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
| 359 |
356 358
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
| 360 |
340
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) |
| 361 |
360
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) |
| 362 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
| 363 |
361 362
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
| 364 |
|
breq1 |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 365 |
|
eqeq2 |
⊢ ( 𝑚 = 𝑘 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ) ) |
| 366 |
365
|
rabbidv |
⊢ ( 𝑚 = 𝑘 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
| 367 |
366
|
neeq1d |
⊢ ( 𝑚 = 𝑘 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
| 368 |
364 367
|
anbi12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) ↔ ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) ) |
| 369 |
366
|
fveq2d |
⊢ ( 𝑚 = 𝑘 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
| 370 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ϕ ‘ 𝑚 ) = ( ϕ ‘ 𝑘 ) ) |
| 371 |
369 370
|
eqeq12d |
⊢ ( 𝑚 = 𝑘 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) |
| 372 |
368 371
|
imbi12d |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ) ↔ ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) ) |
| 373 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ∀ 𝑚 ∈ ℕ ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ) ) |
| 374 |
372 373 349
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) |
| 375 |
374
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) |
| 376 |
363 375
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) |
| 377 |
359 376
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) |
| 378 |
357 377
|
eqled |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) |
| 379 |
|
id |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
| 380 |
379
|
necon1bi |
⊢ ( ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = ∅ ) |
| 381 |
380
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = ∅ ) |
| 382 |
381
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ ∅ ) ) |
| 383 |
223
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ ∅ ) = 0 ) |
| 384 |
382 383
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = 0 ) |
| 385 |
346
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 𝑘 ∈ ℕ ) |
| 386 |
385
|
phicld |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
| 387 |
386
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ϕ ‘ 𝑘 ) ∈ ℕ0 ) |
| 388 |
387
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 0 ≤ ( ϕ ‘ 𝑘 ) ) |
| 389 |
384 388
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) |
| 390 |
378 389
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) |
| 391 |
390
|
ex |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) ) |
| 392 |
391
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) ) |
| 393 |
340 392
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) |
| 394 |
332 337 351 393
|
fsumle |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
| 395 |
327
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
| 396 |
395
|
eqcomd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) |
| 397 |
394 396
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) |
| 398 |
328 397
|
eqbrtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) |
| 399 |
398
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) |
| 400 |
113 121 123 140 227 399
|
ltleaddd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) < ( ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) ) |
| 401 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) |
| 402 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝜑 ) |
| 403 |
127
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 404 |
402 403
|
jca |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ) |
| 405 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 406 |
405
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
| 407 |
406 135
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 408 |
407
|
ex |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑘 ∈ ℕ ) ) |
| 409 |
404 408
|
mpd |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑘 ∈ ℕ ) |
| 410 |
409
|
phicld |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
| 411 |
410
|
nncnd |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ϕ ‘ 𝑘 ) ∈ ℂ ) |
| 412 |
|
fveq2 |
⊢ ( 𝑘 = ( ♯ ‘ 𝐵 ) → ( ϕ ‘ 𝑘 ) = ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 413 |
81 401 86 411 103 412
|
fsumsplit1 |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = ( ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) ) |
| 414 |
400 413
|
breqtrrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) < Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
| 415 |
107 414
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) < Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
| 416 |
|
elfzelz |
⊢ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 𝑎 ∈ ℤ ) |
| 417 |
|
elfzle1 |
⊢ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑎 ) |
| 418 |
416 417
|
jca |
⊢ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
| 419 |
418
|
adantr |
⊢ ( ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
| 420 |
419
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
| 421 |
|
elnnz1 |
⊢ ( 𝑎 ∈ ℕ ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
| 422 |
420 421
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ℕ ) |
| 423 |
422
|
rabss3d |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 424 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝜑 ) |
| 425 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ℕ ) |
| 426 |
424 425
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( 𝜑 ∧ 𝑎 ∈ ℕ ) ) |
| 427 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) |
| 428 |
426 427
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 429 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 1 ∈ ℤ ) |
| 430 |
280
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 431 |
430
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 432 |
425
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑎 ∈ ℕ ) |
| 433 |
432
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑎 ∈ ℤ ) |
| 434 |
432
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑎 ) |
| 435 |
|
nnz |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ ) |
| 436 |
435
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → 𝑎 ∈ ℤ ) |
| 437 |
1 3 4
|
hashfingrpnn |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 438 |
437
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 439 |
|
dvdsle |
⊢ ( ( 𝑎 ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) → 𝑎 ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 440 |
436 438 439
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) → 𝑎 ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 441 |
440
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑎 ≤ ( ♯ ‘ 𝐵 ) ) |
| 442 |
429 431 433 434 441
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 443 |
428 442
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 444 |
443
|
rabss3d |
⊢ ( 𝜑 → { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 445 |
423 444
|
eqssd |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } = { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 446 |
445
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } = { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
| 447 |
446
|
sumeq1d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
| 448 |
415 447
|
breqtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) < Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
| 449 |
|
phisum |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = ( ♯ ‘ 𝐵 ) ) |
| 450 |
39 449
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = ( ♯ ‘ 𝐵 ) ) |
| 451 |
448 450
|
breqtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) < ( ♯ ‘ 𝐵 ) ) |
| 452 |
80 451
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐵 ) ) |
| 453 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 454 |
453
|
nn0red |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 455 |
454
|
ltnrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ¬ ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐵 ) ) |
| 456 |
452 455
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
| 457 |
456
|
ex |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
| 458 |
457
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
| 459 |
36 458
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
| 460 |
33 459
|
pm2.61dan |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |