Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
unitscyglem1.2 |
⊢ ↑ = ( .g ‘ 𝐺 ) |
3 |
|
unitscyglem1.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
|
unitscyglem1.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
unitscyglem1.5 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) |
6 |
|
unitscyglem4.1 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
7 |
|
unitscyglem4.2 |
⊢ ( 𝜑 → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
10 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 |
11 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 |
12 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 ) ) |
13 |
8 9 10 11 12
|
cbvrabw |
⊢ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } |
14 |
13
|
fveq2i |
⊢ ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) ) |
18 |
17
|
ancrd |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) ) |
19 |
18
|
imdistani |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( 𝜑 ∧ ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) ) |
20 |
|
breq1 |
⊢ ( 𝑚 = 𝐷 → ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) ) |
21 |
|
eqeq2 |
⊢ ( 𝑚 = 𝐷 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 ) ) |
22 |
21
|
rabbidv |
⊢ ( 𝑚 = 𝐷 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) |
23 |
22
|
neeq1d |
⊢ ( 𝑚 = 𝐷 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) |
24 |
20 23
|
anbi12d |
⊢ ( 𝑚 = 𝐷 → ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) ↔ ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) ) |
25 |
22
|
fveq2d |
⊢ ( 𝑚 = 𝐷 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) |
26 |
|
fveq2 |
⊢ ( 𝑚 = 𝐷 → ( ϕ ‘ 𝑚 ) = ( ϕ ‘ 𝐷 ) ) |
27 |
25 26
|
eqeq12d |
⊢ ( 𝑚 = 𝐷 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
28 |
24 27
|
imbi12d |
⊢ ( 𝑚 = 𝐷 → ( ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ) ↔ ( ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) ) |
29 |
1 2 3 4 5
|
unitscyglem3 |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ) ) |
30 |
28 29 6
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
31 |
30
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
32 |
19 31
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
33 |
15 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
34 |
|
id |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
35 |
34
|
necon1bi |
⊢ ( ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) |
37 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 𝐺 ∈ Grp ) |
38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 𝐵 ∈ Fin ) |
39 |
1 37 38
|
hashfingrpnn |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
40 |
1 2 37 38 39
|
grpods |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
41 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) |
42 |
41
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) ) |
44 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → 𝐺 ∈ Grp ) |
46 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → 𝑙 ∈ ℤ ) |
47 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
49 |
1 47 48
|
odcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
51 |
50
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ) |
52 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → 𝑥 ∈ 𝐵 ) |
53 |
46 51 52
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ) |
54 |
1 2
|
mulgass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑙 ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) = ( 𝑙 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) ) ) |
55 |
45 53 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) = ( 𝑙 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) ) ) |
56 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
57 |
1 47 2 56
|
odid |
⊢ ( 𝑥 ∈ 𝐵 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
58 |
52 57
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
59 |
58
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) ) = ( 𝑙 ↑ ( 0g ‘ 𝐺 ) ) ) |
60 |
1 2 56
|
mulgz |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ↑ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
61 |
44 60
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ↑ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
62 |
59 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( 𝑙 ↑ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ↑ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
63 |
55 62
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) → ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
65 |
43 64
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑙 ∈ ℤ ) ∧ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
66 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ Fin ) |
67 |
1 47
|
oddvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
68 |
44 66 48 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
69 |
49
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ) |
70 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
71 |
66 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
72 |
71
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
73 |
|
divides |
⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ↔ ∃ 𝑙 ∈ ℤ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) ) |
74 |
69 72 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ↔ ∃ 𝑙 ∈ ℤ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) ) |
75 |
68 74
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑙 ∈ ℤ ( 𝑙 · ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ♯ ‘ 𝐵 ) ) |
76 |
65 75
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
77 |
76
|
rabeqcda |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = 𝐵 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = 𝐵 ) |
79 |
78
|
fveq2d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ♯ ‘ 𝐵 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ 𝐵 ) ) |
80 |
40 79
|
eqtr2d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
81 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) |
82 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) |
83 |
|
fzfid |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ∈ Fin ) |
84 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) |
85 |
84
|
a1i |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
86 |
83 85
|
ssfid |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∈ Fin ) |
87 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝐵 ∈ Fin ) |
88 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 |
89 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 ) |
90 |
87 89
|
ssfid |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin ) |
91 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
92 |
90 91
|
syl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
93 |
92
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℂ ) |
94 |
|
breq1 |
⊢ ( 𝑎 = ( ♯ ‘ 𝐵 ) → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ 𝐵 ) ) ) |
95 |
|
1zzd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 1 ∈ ℤ ) |
96 |
39
|
nnzd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
97 |
39
|
nnge1d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 1 ≤ ( ♯ ‘ 𝐵 ) ) |
98 |
39
|
nnred |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
99 |
98
|
leidd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐵 ) ) |
100 |
95 96 96 97 99
|
elfzd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
101 |
|
iddvds |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℤ → ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ 𝐵 ) ) |
102 |
96 101
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ 𝐵 ) ) |
103 |
94 100 102
|
elrabd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
104 |
|
eqeq2 |
⊢ ( 𝑘 = ( ♯ ‘ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) ) |
105 |
104
|
rabbidv |
⊢ ( 𝑘 = ( ♯ ‘ 𝐵 ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) |
106 |
105
|
fveq2d |
⊢ ( 𝑘 = ( ♯ ‘ 𝐵 ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) ) |
107 |
81 82 86 93 103 106
|
fsumsplit1 |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) ) |
108 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ⊆ 𝐵 |
109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ⊆ 𝐵 ) |
110 |
38 109
|
ssfid |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ∈ Fin ) |
111 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) ∈ ℕ0 ) |
112 |
110 111
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) ∈ ℕ0 ) |
113 |
112
|
nn0red |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) ∈ ℝ ) |
114 |
|
diffi |
⊢ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∈ Fin → ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ∈ Fin ) |
115 |
86 114
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ∈ Fin ) |
116 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → 𝐵 ∈ Fin ) |
117 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 ) |
118 |
116 117
|
ssfid |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin ) |
119 |
118 91
|
syl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
120 |
115 119
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
121 |
120
|
nn0red |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℝ ) |
122 |
39
|
phicld |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℕ ) |
123 |
122
|
nnred |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℝ ) |
124 |
|
eldifi |
⊢ ( 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) → 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
125 |
|
breq1 |
⊢ ( 𝑎 = 𝑘 → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
126 |
125
|
elrab |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ↔ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
127 |
126
|
biimpi |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
128 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 𝑘 ∈ ℤ ) |
129 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑘 ) |
130 |
128 129
|
jca |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
131 |
130
|
adantr |
⊢ ( ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
132 |
127 131
|
syl |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
133 |
124 132
|
syl |
⊢ ( 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
134 |
133
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
135 |
|
elnnz1 |
⊢ ( 𝑘 ∈ ℕ ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
136 |
134 135
|
sylibr |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → 𝑘 ∈ ℕ ) |
137 |
|
phicl |
⊢ ( 𝑘 ∈ ℕ → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
138 |
136 137
|
syl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
139 |
138
|
nnred |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( ϕ ‘ 𝑘 ) ∈ ℝ ) |
140 |
115 139
|
fsumrecl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ∈ ℝ ) |
141 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝜑 ) |
142 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
143 |
141 142
|
jca |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ) |
144 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
145 |
143 144
|
jca |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) ) |
146 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 ↔ ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) = 𝐷 ) ) |
147 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ Grp ) |
148 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) |
149 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ∈ ℕ ) |
150 |
149
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ∈ ℤ ) |
151 |
149
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ≠ 0 ) |
152 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
153 |
152 70
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
154 |
153
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
155 |
|
dvdsval2 |
⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ) ) |
156 |
150 151 154 155
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ) ) |
157 |
148 156
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ) |
158 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
159 |
1 2 147 157 158
|
mulgcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ∈ 𝐵 ) |
160 |
153
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
161 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
162 |
161
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 ∈ ℂ ) |
163 |
1 147 152
|
hashfingrpnn |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
164 |
163
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ≠ 0 ) |
165 |
160 160 162 164 151
|
divdiv2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) = ( ( ( ♯ ‘ 𝐵 ) · 𝐷 ) / ( ♯ ‘ 𝐵 ) ) ) |
166 |
162 160 164
|
divcan3d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) · 𝐷 ) / ( ♯ ‘ 𝐵 ) ) = 𝐷 ) |
167 |
165 166
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 = ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) |
168 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
169 |
168
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ♯ ‘ 𝐵 ) ) ) |
170 |
4 70
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
171 |
170
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
172 |
6
|
nnne0d |
⊢ ( 𝜑 → 𝐷 ≠ 0 ) |
173 |
171 161 172
|
divcan2d |
⊢ ( 𝜑 → ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) = ( ♯ ‘ 𝐵 ) ) |
174 |
173
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) |
175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ♯ ‘ 𝐵 ) = ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) |
176 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) |
177 |
176
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) ) |
178 |
|
nndivdvds |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℕ ) ) |
179 |
163 149 178
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐷 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℕ ) ) |
180 |
148 179
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℕ ) |
181 |
180
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℕ0 ) |
182 |
181 150
|
gcdmultipled |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( 𝐷 · ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) ) = ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) |
183 |
177 182
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) |
184 |
169 183
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) |
185 |
184
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) = ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
186 |
185
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ) = ( ( ♯ ‘ 𝐵 ) / ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
187 |
167 186
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → 𝐷 = ( ( ♯ ‘ 𝐵 ) / ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
188 |
168
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) |
189 |
1 47 2
|
odmulg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) ) |
190 |
147 158 157 189
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) ) |
191 |
188 190
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) ) |
192 |
191
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
193 |
157
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℂ ) |
194 |
184 193
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ ℂ ) |
195 |
1 47 159
|
odcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ∈ ℕ0 ) |
196 |
195
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ∈ ℂ ) |
197 |
168 154
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∈ ℤ ) |
198 |
168 164
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ≠ 0 ) |
199 |
157 197 198
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ≠ 0 ) ) |
200 |
|
gcd2n0cl |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ∈ ℤ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ≠ 0 ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ ℕ ) |
201 |
199 200
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ ℕ ) |
202 |
201
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ≠ 0 ) |
203 |
160 194 196 202
|
divmuld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ↔ ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) = ( ♯ ‘ 𝐵 ) ) ) |
204 |
192 203
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) ) |
205 |
187 204
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( od ‘ 𝐺 ) ‘ ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ) = 𝐷 ) |
206 |
146 159 205
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) |
207 |
|
ne0i |
⊢ ( ( ( ( ♯ ‘ 𝐵 ) / 𝐷 ) ↑ 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
208 |
206 207
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
209 |
145 208
|
syl |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
210 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) |
211 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) |
212 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) |
213 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑧 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) ) |
214 |
211 212 213
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
215 |
210 214
|
bitri |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ↔ ∃ 𝑧 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
216 |
215
|
biimpi |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ → ∃ 𝑧 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
217 |
216
|
adantl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) → ∃ 𝑧 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = ( ♯ ‘ 𝐵 ) ) |
218 |
209 217
|
r19.29a |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) |
219 |
218
|
ex |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) ) |
220 |
219
|
necon4d |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } = ∅ ) ) |
221 |
220
|
imp |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } = ∅ ) |
222 |
221
|
fveq2d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) = ( ♯ ‘ ∅ ) ) |
223 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
224 |
223
|
a1i |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ ∅ ) = 0 ) |
225 |
222 224
|
eqtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) = 0 ) |
226 |
122
|
nngt0d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → 0 < ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) |
227 |
225 226
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) < ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) |
228 |
|
eldif |
⊢ ( 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ↔ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) |
229 |
228
|
biimpi |
⊢ ( 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) → ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) |
230 |
229
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) |
231 |
|
breq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
232 |
231
|
elrab |
⊢ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ↔ ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
233 |
232
|
biimpi |
⊢ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
234 |
233
|
adantr |
⊢ ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
235 |
|
velsn |
⊢ ( 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ↔ 𝑧 = ( ♯ ‘ 𝐵 ) ) |
236 |
235
|
bicomi |
⊢ ( 𝑧 = ( ♯ ‘ 𝐵 ) ↔ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) |
237 |
236
|
biimpi |
⊢ ( 𝑧 = ( ♯ ‘ 𝐵 ) → 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) |
238 |
237
|
necon3bi |
⊢ ( ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
239 |
238
|
adantl |
⊢ ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
240 |
234 239
|
jca |
⊢ ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) |
241 |
240
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) → ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) |
242 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 1 ∈ ℤ ) |
243 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝐵 ∈ Fin ) |
244 |
243 70
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
245 |
244
|
nn0zd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
246 |
245 242
|
zsubcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℤ ) |
247 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ ℤ ) |
248 |
247
|
adantr |
⊢ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ ℤ ) |
249 |
248
|
adantr |
⊢ ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ ℤ ) |
250 |
249
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∈ ℤ ) |
251 |
|
elfzle1 |
⊢ ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑧 ) |
252 |
251
|
adantr |
⊢ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑧 ) |
253 |
252
|
adantr |
⊢ ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑧 ) |
254 |
253
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 1 ≤ 𝑧 ) |
255 |
|
elfzle2 |
⊢ ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
256 |
255
|
adantr |
⊢ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
257 |
256
|
adantr |
⊢ ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
258 |
257
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
259 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
260 |
259
|
necomd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) ≠ 𝑧 ) |
261 |
258 260
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑧 ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ 𝑧 ) ) |
262 |
250
|
zred |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∈ ℝ ) |
263 |
244
|
nn0red |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
264 |
262 263
|
ltlend |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑧 < ( ♯ ‘ 𝐵 ) ↔ ( 𝑧 ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ 𝑧 ) ) ) |
265 |
261 264
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 < ( ♯ ‘ 𝐵 ) ) |
266 |
250 245
|
zltlem1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑧 < ( ♯ ‘ 𝐵 ) ↔ 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
267 |
265 266
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
268 |
242 246 250 254 267
|
elfzd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
269 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) |
270 |
231 268 269
|
elrabd |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
271 |
270
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
272 |
271
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) → ( ( ( 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
273 |
241 272
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
274 |
273
|
ex |
⊢ ( 𝜑 → ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
275 |
274
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → ( ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∧ ¬ 𝑧 ∈ { ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
276 |
230 275
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
277 |
276
|
ex |
⊢ ( 𝜑 → ( 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
278 |
277
|
ssrdv |
⊢ ( 𝜑 → ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ⊆ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
279 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 1 ∈ ℤ ) |
280 |
170
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
281 |
280
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
282 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 𝑧 ∈ ℤ ) |
283 |
282
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ∈ ℤ ) |
284 |
|
elfzle1 |
⊢ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 1 ≤ 𝑧 ) |
285 |
284
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 1 ≤ 𝑧 ) |
286 |
283
|
zred |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ∈ ℝ ) |
287 |
281
|
zred |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
288 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 1 ∈ ℝ ) |
289 |
287 288
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℝ ) |
290 |
|
elfzle2 |
⊢ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
291 |
290
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
292 |
287
|
lem1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ♯ ‘ 𝐵 ) − 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
293 |
286 289 287 291 292
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ≤ ( ♯ ‘ 𝐵 ) ) |
294 |
279 281 283 285 293
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
295 |
294
|
ex |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 𝑧 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) ) |
296 |
295
|
ssrdv |
⊢ ( 𝜑 → ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
297 |
|
rabss2 |
⊢ ( ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
298 |
296 297
|
syl |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
299 |
298
|
sseld |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
300 |
299
|
imp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
301 |
170
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
302 |
301
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
303 |
302
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐵 ) ) |
304 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → 𝑧 = ( ♯ ‘ 𝐵 ) ) |
305 |
304
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) = 𝑧 ) |
306 |
231
|
elrab |
⊢ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ↔ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
307 |
306
|
biimpi |
⊢ ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
308 |
307
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) |
309 |
291
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
310 |
309
|
ex |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
311 |
310
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑧 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑧 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
312 |
308 311
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
313 |
300 233 248
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ ℤ ) |
314 |
280
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
315 |
313 314
|
zltlem1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝑧 < ( ♯ ‘ 𝐵 ) ↔ 𝑧 ≤ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
316 |
312 315
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 < ( ♯ ‘ 𝐵 ) ) |
317 |
316
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → 𝑧 < ( ♯ ‘ 𝐵 ) ) |
318 |
305 317
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐵 ) ) |
319 |
302 302
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐵 ) ↔ ¬ ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
320 |
318 319
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → ¬ ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐵 ) ) |
321 |
303 320
|
pm2.21dd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 = ( ♯ ‘ 𝐵 ) ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
322 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
323 |
321 322
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ≠ ( ♯ ‘ 𝐵 ) ) |
324 |
300 323
|
eldifsnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) |
325 |
324
|
ex |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → 𝑧 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) ) |
326 |
325
|
ssrdv |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ) |
327 |
278 326
|
eqssd |
⊢ ( 𝜑 → ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) = { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
328 |
327
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
329 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∈ Fin ) |
330 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
331 |
330
|
a1i |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
332 |
329 331
|
ssfid |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∈ Fin ) |
333 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝐵 ∈ Fin ) |
334 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 ) |
335 |
333 334
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin ) |
336 |
335 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
337 |
336
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℝ ) |
338 |
125
|
elrab |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ↔ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
339 |
338
|
biimpi |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } → ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
340 |
339
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
341 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 𝑘 ∈ ℤ ) |
342 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → 1 ≤ 𝑘 ) |
343 |
341 342
|
jca |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
344 |
343
|
adantr |
⊢ ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
345 |
344
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
346 |
345 135
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑘 ∈ ℕ ) |
347 |
346
|
ex |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑘 ∈ ℕ ) ) |
348 |
347
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑘 ∈ ℕ ) ) |
349 |
340 348
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑘 ∈ ℕ ) |
350 |
349
|
phicld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
351 |
350
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ϕ ‘ 𝑘 ) ∈ ℝ ) |
352 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 𝜑 ) |
353 |
338
|
biimpri |
⊢ ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
354 |
353
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
355 |
354
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
356 |
352 355
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ) |
357 |
356 337
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℝ ) |
358 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
359 |
356 358
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
360 |
340
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) |
361 |
360
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) |
362 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
363 |
361 362
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
364 |
|
breq1 |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
365 |
|
eqeq2 |
⊢ ( 𝑚 = 𝑘 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ) ) |
366 |
365
|
rabbidv |
⊢ ( 𝑚 = 𝑘 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
367 |
366
|
neeq1d |
⊢ ( 𝑚 = 𝑘 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
368 |
364 367
|
anbi12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) ↔ ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) ) |
369 |
366
|
fveq2d |
⊢ ( 𝑚 = 𝑘 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
370 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ϕ ‘ 𝑚 ) = ( ϕ ‘ 𝑘 ) ) |
371 |
369 370
|
eqeq12d |
⊢ ( 𝑚 = 𝑘 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) |
372 |
368 371
|
imbi12d |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ) ↔ ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) ) |
373 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ∀ 𝑚 ∈ ℕ ( ( 𝑚 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑚 } ) = ( ϕ ‘ 𝑚 ) ) ) |
374 |
372 373 349
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) |
375 |
374
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) |
376 |
363 375
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) |
377 |
359 376
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) |
378 |
357 377
|
eqled |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) |
379 |
|
id |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
380 |
379
|
necon1bi |
⊢ ( ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = ∅ ) |
381 |
380
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = ∅ ) |
382 |
381
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ ∅ ) ) |
383 |
223
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ ∅ ) = 0 ) |
384 |
382 383
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = 0 ) |
385 |
346
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 𝑘 ∈ ℕ ) |
386 |
385
|
phicld |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
387 |
386
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ϕ ‘ 𝑘 ) ∈ ℕ0 ) |
388 |
387
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → 0 ≤ ( ϕ ‘ 𝑘 ) ) |
389 |
384 388
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) |
390 |
378 389
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) |
391 |
390
|
ex |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) ) |
392 |
391
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝑘 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) ) |
393 |
340 392
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ ( ϕ ‘ 𝑘 ) ) |
394 |
332 337 351 393
|
fsumle |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
395 |
327
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
396 |
395
|
eqcomd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) |
397 |
394 396
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) |
398 |
328 397
|
eqbrtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) |
399 |
398
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ≤ Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) |
400 |
113 121 123 140 227 399
|
ltleaddd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) < ( ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) ) |
401 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) |
402 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝜑 ) |
403 |
127
|
adantl |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
404 |
402 403
|
jca |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ) |
405 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
406 |
405
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
407 |
406 135
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) ∧ ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) ) → 𝑘 ∈ ℕ ) |
408 |
407
|
ex |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑘 ∈ ℕ ) ) |
409 |
404 408
|
mpd |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → 𝑘 ∈ ℕ ) |
410 |
409
|
phicld |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ϕ ‘ 𝑘 ) ∈ ℕ ) |
411 |
410
|
nncnd |
⊢ ( ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) → ( ϕ ‘ 𝑘 ) ∈ ℂ ) |
412 |
|
fveq2 |
⊢ ( 𝑘 = ( ♯ ‘ 𝐵 ) → ( ϕ ‘ 𝑘 ) = ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) ) |
413 |
81 401 86 411 103 412
|
fsumsplit1 |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = ( ( ϕ ‘ ( ♯ ‘ 𝐵 ) ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ϕ ‘ 𝑘 ) ) ) |
414 |
400 413
|
breqtrrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) } ) + Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ∖ { ( ♯ ‘ 𝐵 ) } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) < Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
415 |
107 414
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) < Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
416 |
|
elfzelz |
⊢ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 𝑎 ∈ ℤ ) |
417 |
|
elfzle1 |
⊢ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑎 ) |
418 |
416 417
|
jca |
⊢ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
419 |
418
|
adantr |
⊢ ( ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
420 |
419
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
421 |
|
elnnz1 |
⊢ ( 𝑎 ∈ ℕ ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
422 |
420 421
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ℕ ) |
423 |
422
|
rabss3d |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
424 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝜑 ) |
425 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ℕ ) |
426 |
424 425
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( 𝜑 ∧ 𝑎 ∈ ℕ ) ) |
427 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) |
428 |
426 427
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) |
429 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 1 ∈ ℤ ) |
430 |
280
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
431 |
430
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
432 |
425
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑎 ∈ ℕ ) |
433 |
432
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑎 ∈ ℤ ) |
434 |
432
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 1 ≤ 𝑎 ) |
435 |
|
nnz |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ ) |
436 |
435
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → 𝑎 ∈ ℤ ) |
437 |
1 3 4
|
hashfingrpnn |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
438 |
437
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
439 |
|
dvdsle |
⊢ ( ( 𝑎 ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) → 𝑎 ≤ ( ♯ ‘ 𝐵 ) ) ) |
440 |
436 438 439
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( 𝑎 ∥ ( ♯ ‘ 𝐵 ) → 𝑎 ≤ ( ♯ ‘ 𝐵 ) ) ) |
441 |
440
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑎 ≤ ( ♯ ‘ 𝐵 ) ) |
442 |
429 431 433 434 441
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
443 |
428 442
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑎 ∥ ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
444 |
443
|
rabss3d |
⊢ ( 𝜑 → { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ⊆ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
445 |
423 444
|
eqssd |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } = { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
446 |
445
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } = { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ) |
447 |
446
|
sumeq1d |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
448 |
415 447
|
breqtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) < Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) ) |
449 |
|
phisum |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = ( ♯ ‘ 𝐵 ) ) |
450 |
39 449
|
syl |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ϕ ‘ 𝑘 ) = ( ♯ ‘ 𝐵 ) ) |
451 |
448 450
|
breqtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∣ 𝑎 ∥ ( ♯ ‘ 𝐵 ) } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) < ( ♯ ‘ 𝐵 ) ) |
452 |
80 451
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐵 ) ) |
453 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
454 |
453
|
nn0red |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
455 |
454
|
ltnrd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ¬ ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐵 ) ) |
456 |
452 455
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ ) → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
457 |
456
|
ex |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
458 |
457
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } = ∅ → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
459 |
36 458
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ≠ ∅ ) → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |
460 |
33 459
|
pm2.61dan |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑦 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |