| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem1.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | unitscyglem1.2 | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | unitscyglem1.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | unitscyglem1.4 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 5 |  | unitscyglem1.5 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) | 
						
							| 6 |  | breq1 | ⊢ ( 𝑑  =  𝑐  →  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ↔  𝑐  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 7 |  | eqeq2 | ⊢ ( 𝑑  =  𝑐  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 ) ) | 
						
							| 8 | 7 | rabbidv | ⊢ ( 𝑑  =  𝑐  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } ) | 
						
							| 9 | 8 | neeq1d | ⊢ ( 𝑑  =  𝑐  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅  ↔  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ ) ) | 
						
							| 10 | 6 9 | anbi12d | ⊢ ( 𝑑  =  𝑐  →  ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  ↔  ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ ) ) ) | 
						
							| 11 | 8 | fveq2d | ⊢ ( 𝑑  =  𝑐  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑑  =  𝑐  →  ( ϕ ‘ 𝑑 )  =  ( ϕ ‘ 𝑐 ) ) | 
						
							| 13 | 11 12 | eqeq12d | ⊢ ( 𝑑  =  𝑐  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 )  ↔  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) | 
						
							| 14 | 10 13 | imbi12d | ⊢ ( 𝑑  =  𝑐  →  ( ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) )  ↔  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑑  =  𝑐  →  ( ( 𝜑  →  ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) )  ↔  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) ) | 
						
							| 16 |  | simplr | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  𝜑 ) | 
						
							| 17 |  | simplll | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  𝑑  ∈  ℕ ) | 
						
							| 18 | 16 17 | jca | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  ( 𝜑  ∧  𝑑  ∈  ℕ ) ) | 
						
							| 19 |  | breq1 | ⊢ ( 𝑐  =  𝑒  →  ( 𝑐  <  𝑑  ↔  𝑒  <  𝑑 ) ) | 
						
							| 20 |  | breq1 | ⊢ ( 𝑐  =  𝑒  →  ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ↔  𝑒  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 21 |  | eqeq2 | ⊢ ( 𝑐  =  𝑒  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 ) ) | 
						
							| 22 | 21 | rabbidv | ⊢ ( 𝑐  =  𝑒  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } ) | 
						
							| 23 | 22 | neeq1d | ⊢ ( 𝑐  =  𝑒  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅  ↔  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ ) ) | 
						
							| 24 | 20 23 | anbi12d | ⊢ ( 𝑐  =  𝑒  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  ↔  ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ ) ) ) | 
						
							| 25 | 22 | fveq2d | ⊢ ( 𝑐  =  𝑒  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑐  =  𝑒  →  ( ϕ ‘ 𝑐 )  =  ( ϕ ‘ 𝑒 ) ) | 
						
							| 27 | 25 26 | eqeq12d | ⊢ ( 𝑐  =  𝑒  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 )  ↔  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) | 
						
							| 28 | 24 27 | imbi12d | ⊢ ( 𝑐  =  𝑒  →  ( ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) )  ↔  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) | 
						
							| 29 | 28 | imbi2d | ⊢ ( 𝑐  =  𝑒  →  ( ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) )  ↔  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) ) | 
						
							| 30 | 19 29 | imbi12d | ⊢ ( 𝑐  =  𝑒  →  ( ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ↔  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  →  𝑒  ∈  ℕ ) | 
						
							| 36 | 30 34 35 | rspcdva | ⊢ ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  →  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) ) | 
						
							| 37 |  | simp-5r | ⊢ ( ( ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  ∧  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) )  ∧  𝑒  <  𝑑 )  →  𝜑 ) | 
						
							| 38 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  ∧  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) )  ∧  𝑒  <  𝑑 )  →  𝑒  <  𝑑 ) | 
						
							| 39 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  ∧  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) )  ∧  𝑒  <  𝑑 )  →  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) ) | 
						
							| 40 | 38 39 | mpd | ⊢ ( ( ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  ∧  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) )  ∧  𝑒  <  𝑑 )  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) | 
						
							| 41 | 37 40 | mpd | ⊢ ( ( ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  ∧  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) )  ∧  𝑒  <  𝑑 )  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) | 
						
							| 42 | 41 | ex | ⊢ ( ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  ∧  ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) )  →  ( 𝑒  <  𝑑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) | 
						
							| 43 | 42 | ex | ⊢ ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  →  ( ( 𝑒  <  𝑑  →  ( 𝜑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) )  →  ( 𝑒  <  𝑑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) ) | 
						
							| 44 | 36 43 | mpd | ⊢ ( ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  ∧  𝑒  ∈  ℕ )  →  ( 𝑒  <  𝑑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) | 
						
							| 45 | 44 | ralrimiva | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  ∀ 𝑒  ∈  ℕ ( 𝑒  <  𝑑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑐 ( 𝑒  <  𝑑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) ) | 
						
							| 47 |  | nfv | ⊢ Ⅎ 𝑒 ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) | 
						
							| 48 |  | breq1 | ⊢ ( 𝑒  =  𝑐  →  ( 𝑒  <  𝑑  ↔  𝑐  <  𝑑 ) ) | 
						
							| 49 |  | breq1 | ⊢ ( 𝑒  =  𝑐  →  ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ↔  𝑐  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 50 |  | eqeq2 | ⊢ ( 𝑒  =  𝑐  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 ) ) | 
						
							| 51 | 50 | rabbidv | ⊢ ( 𝑒  =  𝑐  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } ) | 
						
							| 52 | 51 | neeq1d | ⊢ ( 𝑒  =  𝑐  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅  ↔  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ ) ) | 
						
							| 53 | 49 52 | anbi12d | ⊢ ( 𝑒  =  𝑐  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  ↔  ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ ) ) ) | 
						
							| 54 | 51 | fveq2d | ⊢ ( 𝑒  =  𝑐  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑒  =  𝑐  →  ( ϕ ‘ 𝑒 )  =  ( ϕ ‘ 𝑐 ) ) | 
						
							| 56 | 54 55 | eqeq12d | ⊢ ( 𝑒  =  𝑐  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 )  ↔  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) | 
						
							| 57 | 53 56 | imbi12d | ⊢ ( 𝑒  =  𝑐  →  ( ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) )  ↔  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 58 | 48 57 | imbi12d | ⊢ ( 𝑒  =  𝑐  →  ( ( 𝑒  <  𝑑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) )  ↔  ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) ) | 
						
							| 59 | 46 47 58 | cbvralw | ⊢ ( ∀ 𝑒  ∈  ℕ ( 𝑒  <  𝑑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) )  ↔  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 60 | 59 | biimpi | ⊢ ( ∀ 𝑒  ∈  ℕ ( 𝑒  <  𝑑  →  ( ( 𝑒  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑒 } )  =  ( ϕ ‘ 𝑒 ) ) )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 61 | 45 60 | syl | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 62 | 18 61 | jca | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) ) | 
						
							| 63 |  | simprl | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  𝑑  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 64 | 62 63 | jca | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 65 |  | simprr | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) | 
						
							| 66 | 64 65 | jca | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) ) | 
						
							| 67 |  | rabn0 | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅  ↔  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 ) | 
						
							| 68 | 67 | biimpi | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅  →  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 ) | 
						
							| 70 |  | simp-4l | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) ) | 
						
							| 71 |  | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  𝑑  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 72 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  𝑎  ∈  𝐵 ) | 
						
							| 73 | 70 71 72 | jca31 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 ) ) | 
						
							| 74 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 ) | 
						
							| 75 | 73 74 | jca | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 ) ) | 
						
							| 76 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 77 |  | nfcv | ⊢ Ⅎ 𝑧 𝐵 | 
						
							| 78 |  | nfv | ⊢ Ⅎ 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 | 
						
							| 79 |  | nfv | ⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑑 | 
						
							| 80 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑧  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑑 ) ) | 
						
							| 81 | 76 77 78 79 80 | cbvrabw | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  =  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑑 } | 
						
							| 82 | 81 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  =  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑑 } ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑑 } ) ) | 
						
							| 84 | 3 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  𝐺  ∈  Grp ) | 
						
							| 85 | 4 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  𝐵  ∈  Fin ) | 
						
							| 86 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 87 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 88 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑛  ↑  𝑥 )  =  ( 𝑛  ↑  𝑧 ) ) | 
						
							| 89 | 88 | eqeq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 )  ↔  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 90 | 76 77 86 87 89 | cbvrabw | ⊢ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) } | 
						
							| 91 | 90 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 93 | 92 | breq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛  ↔  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) ) | 
						
							| 94 | 93 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛  ↔  ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) ) | 
						
							| 95 | 94 | biimpd | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛  →  ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) ) | 
						
							| 96 | 5 95 | mpd | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) | 
						
							| 97 | 96 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( 𝑛  ↑  𝑧 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) | 
						
							| 98 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  𝑑  ∈  ℕ ) | 
						
							| 99 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  𝑑  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 100 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  𝑎  ∈  𝐵 ) | 
						
							| 101 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 ) | 
						
							| 102 |  | nfv | ⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 | 
						
							| 103 |  | nfv | ⊢ Ⅎ 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 | 
						
							| 104 |  | fveqeq2 | ⊢ ( 𝑧  =  𝑥  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 ) ) | 
						
							| 105 | 77 76 102 103 104 | cbvrabw | ⊢ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } | 
						
							| 106 |  | eqcom | ⊢ ( { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ↔  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  =  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } ) | 
						
							| 107 | 105 106 | mpbi | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  =  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } | 
						
							| 108 | 107 | neeq1i | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅  ↔  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ ) | 
						
							| 109 | 108 | anbi2i | ⊢ ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  ↔  ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ ) ) | 
						
							| 110 | 107 | fveq2i | ⊢ ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } ) | 
						
							| 111 | 110 | eqeq1i | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 )  ↔  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) | 
						
							| 112 | 109 111 | imbi12i | ⊢ ( ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) )  ↔  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) | 
						
							| 113 | 112 | imbi2i | ⊢ ( ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) )  ↔  ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 114 | 113 | biimpi | ⊢ ( ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) )  →  ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 115 | 114 | ralimi | ⊢ ( ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 116 | 115 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 120 | 1 2 84 85 97 98 99 100 101 119 | unitscyglem2 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ♯ ‘ { 𝑧  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑧 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) | 
						
							| 121 | 83 120 | eqtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) | 
						
							| 122 | 75 121 | syl | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) | 
						
							| 123 |  | nfv | ⊢ Ⅎ 𝑎 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 | 
						
							| 124 |  | nfv | ⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 | 
						
							| 125 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑎  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 ) ) | 
						
							| 126 | 123 124 125 | cbvrexw | ⊢ ( ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑  ↔  ∃ 𝑎  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 ) | 
						
							| 127 | 126 | biimpi | ⊢ ( ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑  →  ∃ 𝑎  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 ) | 
						
							| 128 | 127 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  →  ∃ 𝑎  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  𝑑 ) | 
						
							| 129 | 122 128 | r19.29a | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) | 
						
							| 130 | 129 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  →  ( ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ∃ 𝑥  ∈  𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) | 
						
							| 132 | 69 131 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑑  ∈  ℕ )  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  ∧  𝑑  ∥  ( ♯ ‘ 𝐵 ) )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) | 
						
							| 133 | 66 132 | syl | ⊢ ( ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  ∧  ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ ) )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) | 
						
							| 134 | 133 | ex | ⊢ ( ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  ∧  𝜑 )  →  ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) | 
						
							| 135 | 134 | ex | ⊢ ( ( 𝑑  ∈  ℕ  ∧  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) )  →  ( 𝜑  →  ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) ) | 
						
							| 136 | 135 | ex | ⊢ ( 𝑑  ∈  ℕ  →  ( ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝑑  →  ( 𝜑  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) )  →  ( 𝜑  →  ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) ) ) | 
						
							| 137 | 15 136 | indstr | ⊢ ( 𝑑  ∈  ℕ  →  ( 𝜑  →  ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) ) | 
						
							| 138 | 137 | com12 | ⊢ ( 𝜑  →  ( 𝑑  ∈  ℕ  →  ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) ) | 
						
							| 139 | 138 | imp | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) | 
						
							| 140 | 139 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑑  ∈  ℕ ( ( 𝑑  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑑 } )  =  ( ϕ ‘ 𝑑 ) ) ) |