Metamath Proof Explorer


Theorem unitscyglem3

Description: Lemma for unitscyg. (Contributed by metakunt, 14-Jul-2025)

Ref Expression
Hypotheses unitscyglem1.1 𝐵 = ( Base ‘ 𝐺 )
unitscyglem1.2 = ( .g𝐺 )
unitscyglem1.3 ( 𝜑𝐺 ∈ Grp )
unitscyglem1.4 ( 𝜑𝐵 ∈ Fin )
unitscyglem1.5 ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) ≤ 𝑛 )
Assertion unitscyglem3 ( 𝜑 → ∀ 𝑑 ∈ ℕ ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) )

Proof

Step Hyp Ref Expression
1 unitscyglem1.1 𝐵 = ( Base ‘ 𝐺 )
2 unitscyglem1.2 = ( .g𝐺 )
3 unitscyglem1.3 ( 𝜑𝐺 ∈ Grp )
4 unitscyglem1.4 ( 𝜑𝐵 ∈ Fin )
5 unitscyglem1.5 ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) ≤ 𝑛 )
6 breq1 ( 𝑑 = 𝑐 → ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑐 ∥ ( ♯ ‘ 𝐵 ) ) )
7 eqeq2 ( 𝑑 = 𝑐 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ) )
8 7 rabbidv ( 𝑑 = 𝑐 → { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } = { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } )
9 8 neeq1d ( 𝑑 = 𝑐 → ( { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ↔ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) )
10 6 9 anbi12d ( 𝑑 = 𝑐 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ↔ ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ) )
11 8 fveq2d ( 𝑑 = 𝑐 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) )
12 fveq2 ( 𝑑 = 𝑐 → ( ϕ ‘ 𝑑 ) = ( ϕ ‘ 𝑐 ) )
13 11 12 eqeq12d ( 𝑑 = 𝑐 → ( ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ↔ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) )
14 10 13 imbi12d ( 𝑑 = 𝑐 → ( ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ↔ ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
15 14 imbi2d ( 𝑑 = 𝑐 → ( ( 𝜑 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) ↔ ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) )
16 simplr ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → 𝜑 )
17 simplll ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → 𝑑 ∈ ℕ )
18 16 17 jca ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( 𝜑𝑑 ∈ ℕ ) )
19 breq1 ( 𝑐 = 𝑒 → ( 𝑐 < 𝑑𝑒 < 𝑑 ) )
20 breq1 ( 𝑐 = 𝑒 → ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑒 ∥ ( ♯ ‘ 𝐵 ) ) )
21 eqeq2 ( 𝑐 = 𝑒 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 ) )
22 21 rabbidv ( 𝑐 = 𝑒 → { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } = { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } )
23 22 neeq1d ( 𝑐 = 𝑒 → ( { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ↔ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) )
24 20 23 anbi12d ( 𝑐 = 𝑒 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ↔ ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) ) )
25 22 fveq2d ( 𝑐 = 𝑒 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) )
26 fveq2 ( 𝑐 = 𝑒 → ( ϕ ‘ 𝑐 ) = ( ϕ ‘ 𝑒 ) )
27 25 26 eqeq12d ( 𝑐 = 𝑒 → ( ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ↔ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) )
28 24 27 imbi12d ( 𝑐 = 𝑒 → ( ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ↔ ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) )
29 28 imbi2d ( 𝑐 = 𝑒 → ( ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ↔ ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) )
30 19 29 imbi12d ( 𝑐 = 𝑒 → ( ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ↔ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) )
31 simpr ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) )
32 31 adantr ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) )
33 32 adantr ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) )
34 33 adantr ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) )
35 simpr ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → 𝑒 ∈ ℕ )
36 30 34 35 rspcdva ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) )
37 simp-5r ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → 𝜑 )
38 simpr ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → 𝑒 < 𝑑 )
39 simplr ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) )
40 38 39 mpd ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) )
41 37 40 mpd ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) )
42 41 ex ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) → ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) )
43 42 ex ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → ( ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) → ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) )
44 36 43 mpd ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) )
45 44 ralrimiva ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ∀ 𝑒 ∈ ℕ ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) )
46 nfv 𝑐 ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) )
47 nfv 𝑒 ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) )
48 breq1 ( 𝑒 = 𝑐 → ( 𝑒 < 𝑑𝑐 < 𝑑 ) )
49 breq1 ( 𝑒 = 𝑐 → ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑐 ∥ ( ♯ ‘ 𝐵 ) ) )
50 eqeq2 ( 𝑒 = 𝑐 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ) )
51 50 rabbidv ( 𝑒 = 𝑐 → { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } = { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } )
52 51 neeq1d ( 𝑒 = 𝑐 → ( { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ↔ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) )
53 49 52 anbi12d ( 𝑒 = 𝑐 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) ↔ ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ) )
54 51 fveq2d ( 𝑒 = 𝑐 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) )
55 fveq2 ( 𝑒 = 𝑐 → ( ϕ ‘ 𝑒 ) = ( ϕ ‘ 𝑐 ) )
56 54 55 eqeq12d ( 𝑒 = 𝑐 → ( ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ↔ ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) )
57 53 56 imbi12d ( 𝑒 = 𝑐 → ( ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ↔ ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
58 48 57 imbi12d ( 𝑒 = 𝑐 → ( ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ↔ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) )
59 46 47 58 cbvralw ( ∀ 𝑒 ∈ ℕ ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ↔ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
60 59 biimpi ( ∀ 𝑒 ∈ ℕ ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
61 45 60 syl ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
62 18 61 jca ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) )
63 simprl ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → 𝑑 ∥ ( ♯ ‘ 𝐵 ) )
64 62 63 jca ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) )
65 simprr ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ )
66 64 65 jca ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) )
67 rabn0 ( { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ↔ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 )
68 67 biimpi ( { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ → ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 )
69 68 adantl ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 )
70 simp-4l ( ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) )
71 simp-4r ( ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑑 ∥ ( ♯ ‘ 𝐵 ) )
72 simplr ( ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑎𝐵 )
73 70 71 72 jca31 ( ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) )
74 simpr ( ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 )
75 73 74 jca ( ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) )
76 nfcv 𝑥 𝐵
77 nfcv 𝑧 𝐵
78 nfv 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑
79 nfv 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑
80 fveqeq2 ( 𝑥 = 𝑧 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 ) )
81 76 77 78 79 80 cbvrabw { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } = { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 }
82 81 a1i ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } = { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 } )
83 82 fveq2d ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 } ) )
84 3 ad5antr ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝐺 ∈ Grp )
85 4 ad5antr ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝐵 ∈ Fin )
86 nfv 𝑧 ( 𝑛 𝑥 ) = ( 0g𝐺 )
87 nfv 𝑥 ( 𝑛 𝑧 ) = ( 0g𝐺 )
88 oveq2 ( 𝑥 = 𝑧 → ( 𝑛 𝑥 ) = ( 𝑛 𝑧 ) )
89 88 eqeq1d ( 𝑥 = 𝑧 → ( ( 𝑛 𝑥 ) = ( 0g𝐺 ) ↔ ( 𝑛 𝑧 ) = ( 0g𝐺 ) ) )
90 76 77 86 87 89 cbvrabw { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } = { 𝑧𝐵 ∣ ( 𝑛 𝑧 ) = ( 0g𝐺 ) }
91 90 a1i ( 𝜑 → { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } = { 𝑧𝐵 ∣ ( 𝑛 𝑧 ) = ( 0g𝐺 ) } )
92 91 fveq2d ( 𝜑 → ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) = ( ♯ ‘ { 𝑧𝐵 ∣ ( 𝑛 𝑧 ) = ( 0g𝐺 ) } ) )
93 92 breq1d ( 𝜑 → ( ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) ≤ 𝑛 ↔ ( ♯ ‘ { 𝑧𝐵 ∣ ( 𝑛 𝑧 ) = ( 0g𝐺 ) } ) ≤ 𝑛 ) )
94 93 ralbidv ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) ≤ 𝑛 ↔ ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑧𝐵 ∣ ( 𝑛 𝑧 ) = ( 0g𝐺 ) } ) ≤ 𝑛 ) )
95 94 biimpd ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥𝐵 ∣ ( 𝑛 𝑥 ) = ( 0g𝐺 ) } ) ≤ 𝑛 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑧𝐵 ∣ ( 𝑛 𝑧 ) = ( 0g𝐺 ) } ) ≤ 𝑛 ) )
96 5 95 mpd ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑧𝐵 ∣ ( 𝑛 𝑧 ) = ( 0g𝐺 ) } ) ≤ 𝑛 )
97 96 ad5antr ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑧𝐵 ∣ ( 𝑛 𝑧 ) = ( 0g𝐺 ) } ) ≤ 𝑛 )
98 simp-5r ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑑 ∈ ℕ )
99 simpllr ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑑 ∥ ( ♯ ‘ 𝐵 ) )
100 simplr ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑎𝐵 )
101 simpr ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 )
102 nfv 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐
103 nfv 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐
104 fveqeq2 ( 𝑧 = 𝑥 → ( ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ) )
105 77 76 102 103 104 cbvrabw { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } = { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 }
106 eqcom ( { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } = { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ↔ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } = { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } )
107 105 106 mpbi { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } = { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 }
108 107 neeq1i ( { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ↔ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ )
109 108 anbi2i ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ↔ ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) )
110 107 fveq2i ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } )
111 110 eqeq1i ( ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ↔ ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) )
112 109 111 imbi12i ( ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ↔ ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) )
113 112 imbi2i ( ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ↔ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
114 113 biimpi ( ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) → ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
115 114 ralimi ( ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
116 115 adantl ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
117 116 adantr ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
118 117 adantr ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
119 118 adantr ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) )
120 1 2 84 85 97 98 99 100 101 119 unitscyglem2 ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ♯ ‘ { 𝑧𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) )
121 83 120 eqtrd ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) )
122 75 121 syl ( ( ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) )
123 nfv 𝑎 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑
124 nfv 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑
125 fveqeq2 ( 𝑥 = 𝑎 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) )
126 123 124 125 cbvrexw ( ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ↔ ∃ 𝑎𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 )
127 126 biimpi ( ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 → ∃ 𝑎𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 )
128 127 adantl ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) → ∃ 𝑎𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 )
129 122 128 r19.29a ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) )
130 129 ex ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) )
131 130 adantr ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ∃ 𝑥𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) )
132 69 131 mpd ( ( ( ( ( 𝜑𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) )
133 66 132 syl ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) )
134 133 ex ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) )
135 134 ex ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) → ( 𝜑 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) )
136 135 ex ( 𝑑 ∈ ℕ → ( ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) → ( 𝜑 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) ) )
137 15 136 indstr ( 𝑑 ∈ ℕ → ( 𝜑 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) )
138 137 com12 ( 𝜑 → ( 𝑑 ∈ ℕ → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) )
139 138 imp ( ( 𝜑𝑑 ∈ ℕ ) → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) )
140 139 ralrimiva ( 𝜑 → ∀ 𝑑 ∈ ℕ ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) )