Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
unitscyglem1.2 |
⊢ ↑ = ( .g ‘ 𝐺 ) |
3 |
|
unitscyglem1.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
|
unitscyglem1.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
unitscyglem1.5 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) |
6 |
|
breq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑐 ∥ ( ♯ ‘ 𝐵 ) ) ) |
7 |
|
eqeq2 |
⊢ ( 𝑑 = 𝑐 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ) ) |
8 |
7
|
rabbidv |
⊢ ( 𝑑 = 𝑐 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) |
9 |
8
|
neeq1d |
⊢ ( 𝑑 = 𝑐 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ) |
10 |
6 9
|
anbi12d |
⊢ ( 𝑑 = 𝑐 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ↔ ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ) ) |
11 |
8
|
fveq2d |
⊢ ( 𝑑 = 𝑐 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) ) |
12 |
|
fveq2 |
⊢ ( 𝑑 = 𝑐 → ( ϕ ‘ 𝑑 ) = ( ϕ ‘ 𝑐 ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑑 = 𝑐 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) |
14 |
10 13
|
imbi12d |
⊢ ( 𝑑 = 𝑐 → ( ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ↔ ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑑 = 𝑐 → ( ( 𝜑 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) ↔ ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) |
16 |
|
simplr |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → 𝜑 ) |
17 |
|
simplll |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → 𝑑 ∈ ℕ ) |
18 |
16 17
|
jca |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( 𝜑 ∧ 𝑑 ∈ ℕ ) ) |
19 |
|
breq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 < 𝑑 ↔ 𝑒 < 𝑑 ) ) |
20 |
|
breq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑒 ∥ ( ♯ ‘ 𝐵 ) ) ) |
21 |
|
eqeq2 |
⊢ ( 𝑐 = 𝑒 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 ) ) |
22 |
21
|
rabbidv |
⊢ ( 𝑐 = 𝑒 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) |
23 |
22
|
neeq1d |
⊢ ( 𝑐 = 𝑒 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) ) |
24 |
20 23
|
anbi12d |
⊢ ( 𝑐 = 𝑒 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ↔ ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) ) ) |
25 |
22
|
fveq2d |
⊢ ( 𝑐 = 𝑒 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) ) |
26 |
|
fveq2 |
⊢ ( 𝑐 = 𝑒 → ( ϕ ‘ 𝑐 ) = ( ϕ ‘ 𝑒 ) ) |
27 |
25 26
|
eqeq12d |
⊢ ( 𝑐 = 𝑒 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) |
28 |
24 27
|
imbi12d |
⊢ ( 𝑐 = 𝑒 → ( ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ↔ ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑐 = 𝑒 → ( ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ↔ ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) |
30 |
19 29
|
imbi12d |
⊢ ( 𝑐 = 𝑒 → ( ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ↔ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ) |
31 |
|
simpr |
⊢ ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) |
33 |
32
|
adantr |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) |
35 |
|
simpr |
⊢ ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → 𝑒 ∈ ℕ ) |
36 |
30 34 35
|
rspcdva |
⊢ ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) |
37 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → 𝜑 ) |
38 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → 𝑒 < 𝑑 ) |
39 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) |
40 |
38 39
|
mpd |
⊢ ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) |
41 |
37 40
|
mpd |
⊢ ( ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) ∧ 𝑒 < 𝑑 ) → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) |
42 |
41
|
ex |
⊢ ( ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) ∧ ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) → ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) |
43 |
42
|
ex |
⊢ ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → ( ( 𝑒 < 𝑑 → ( 𝜑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) → ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) ) |
44 |
36 43
|
mpd |
⊢ ( ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) ∧ 𝑒 ∈ ℕ ) → ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) |
45 |
44
|
ralrimiva |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ∀ 𝑒 ∈ ℕ ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ) |
46 |
|
nfv |
⊢ Ⅎ 𝑐 ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) |
47 |
|
nfv |
⊢ Ⅎ 𝑒 ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) |
48 |
|
breq1 |
⊢ ( 𝑒 = 𝑐 → ( 𝑒 < 𝑑 ↔ 𝑐 < 𝑑 ) ) |
49 |
|
breq1 |
⊢ ( 𝑒 = 𝑐 → ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑐 ∥ ( ♯ ‘ 𝐵 ) ) ) |
50 |
|
eqeq2 |
⊢ ( 𝑒 = 𝑐 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ) ) |
51 |
50
|
rabbidv |
⊢ ( 𝑒 = 𝑐 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) |
52 |
51
|
neeq1d |
⊢ ( 𝑒 = 𝑐 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ) |
53 |
49 52
|
anbi12d |
⊢ ( 𝑒 = 𝑐 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) ↔ ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ) ) |
54 |
51
|
fveq2d |
⊢ ( 𝑒 = 𝑐 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) ) |
55 |
|
fveq2 |
⊢ ( 𝑒 = 𝑐 → ( ϕ ‘ 𝑒 ) = ( ϕ ‘ 𝑐 ) ) |
56 |
54 55
|
eqeq12d |
⊢ ( 𝑒 = 𝑐 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) |
57 |
53 56
|
imbi12d |
⊢ ( 𝑒 = 𝑐 → ( ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ↔ ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
58 |
48 57
|
imbi12d |
⊢ ( 𝑒 = 𝑐 → ( ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ↔ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) |
59 |
46 47 58
|
cbvralw |
⊢ ( ∀ 𝑒 ∈ ℕ ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) ↔ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
60 |
59
|
biimpi |
⊢ ( ∀ 𝑒 ∈ ℕ ( 𝑒 < 𝑑 → ( ( 𝑒 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑒 } ) = ( ϕ ‘ 𝑒 ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
61 |
45 60
|
syl |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
62 |
18 61
|
jca |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) |
63 |
|
simprl |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) |
64 |
62 63
|
jca |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ) |
65 |
|
simprr |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) |
66 |
64 65
|
jca |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) |
67 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) |
68 |
67
|
biimpi |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) |
69 |
68
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) |
70 |
|
simp-4l |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) |
71 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) |
72 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑎 ∈ 𝐵 ) |
73 |
70 71 72
|
jca31 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ) |
74 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) |
75 |
73 74
|
jca |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) ) |
76 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
77 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐵 |
78 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 |
79 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 |
80 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑧 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 ) ) |
81 |
76 77 78 79 80
|
cbvrabw |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } = { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 } |
82 |
81
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } = { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 } ) |
83 |
82
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 } ) ) |
84 |
3
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝐺 ∈ Grp ) |
85 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝐵 ∈ Fin ) |
86 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) |
87 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) |
88 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑛 ↑ 𝑥 ) = ( 𝑛 ↑ 𝑧 ) ) |
89 |
88
|
eqeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ↔ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) ) ) |
90 |
76 77 86 87 89
|
cbvrabw |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = { 𝑧 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) } |
91 |
90
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = { 𝑧 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) } ) |
92 |
91
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ) |
93 |
92
|
breq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ↔ ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) ) |
94 |
93
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ↔ ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) ) |
95 |
94
|
biimpd |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) ) |
96 |
5 95
|
mpd |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) |
97 |
96
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑧 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) |
98 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑑 ∈ ℕ ) |
99 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) |
100 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → 𝑎 ∈ 𝐵 ) |
101 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) |
102 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 |
103 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 |
104 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑥 → ( ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ) ) |
105 |
77 76 102 103 104
|
cbvrabw |
⊢ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } |
106 |
|
eqcom |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } = { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) |
107 |
105 106
|
mpbi |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } = { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } |
108 |
107
|
neeq1i |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ↔ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) |
109 |
108
|
anbi2i |
⊢ ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ↔ ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) ) |
110 |
107
|
fveq2i |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) |
111 |
110
|
eqeq1i |
⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ↔ ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) |
112 |
109 111
|
imbi12i |
⊢ ( ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ↔ ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) |
113 |
112
|
imbi2i |
⊢ ( ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ↔ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
114 |
113
|
biimpi |
⊢ ( ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) → ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
115 |
114
|
ralimi |
⊢ ( ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
116 |
115
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
117 |
116
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
118 |
117
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
119 |
118
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
120 |
1 2 84 85 97 98 99 100 101 119
|
unitscyglem2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ♯ ‘ { 𝑧 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑧 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) |
121 |
83 120
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) |
122 |
75 121
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) |
123 |
|
nfv |
⊢ Ⅎ 𝑎 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 |
124 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 |
125 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑎 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) ) |
126 |
123 124 125
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ↔ ∃ 𝑎 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) |
127 |
126
|
biimpi |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 → ∃ 𝑎 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) |
128 |
127
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) → ∃ 𝑎 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) = 𝑑 ) |
129 |
122 128
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) |
130 |
129
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) |
131 |
130
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) |
132 |
69 131
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ∧ 𝑑 ∥ ( ♯ ‘ 𝐵 ) ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) |
133 |
66 132
|
syl |
⊢ ( ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) ∧ ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) |
134 |
133
|
ex |
⊢ ( ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) ∧ 𝜑 ) → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) |
135 |
134
|
ex |
⊢ ( ( 𝑑 ∈ ℕ ∧ ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) ) → ( 𝜑 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) ) |
136 |
135
|
ex |
⊢ ( 𝑑 ∈ ℕ → ( ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝑑 → ( 𝜑 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) → ( 𝜑 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) ) ) |
137 |
15 136
|
indstr |
⊢ ( 𝑑 ∈ ℕ → ( 𝜑 → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) ) |
138 |
137
|
com12 |
⊢ ( 𝜑 → ( 𝑑 ∈ ℕ → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) ) |
139 |
138
|
imp |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ ) → ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) |
140 |
139
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ ℕ ( ( 𝑑 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑑 } ) = ( ϕ ‘ 𝑑 ) ) ) |