Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
unitscyglem1.2 |
⊢ ↑ = ( .g ‘ 𝐺 ) |
3 |
|
unitscyglem1.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
|
unitscyglem1.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
unitscyglem1.5 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝑛 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ≤ 𝑛 ) |
6 |
|
unitscyglem2.1 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
7 |
|
unitscyglem2.2 |
⊢ ( 𝜑 → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) |
8 |
|
unitscyglem2.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
9 |
|
unitscyglem2.4 |
⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = 𝐷 ) |
10 |
|
unitscyglem2.5 |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝐷 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
11 |
|
breq1 |
⊢ ( 𝑎 = 𝑘 → ( 𝑎 ∥ 𝐷 ↔ 𝑘 ∥ 𝐷 ) ) |
12 |
11
|
elrab |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ↔ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) |
13 |
12
|
biimpi |
⊢ ( 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } → ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) |
15 |
14
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) |
16 |
15
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑘 ∈ ℤ ) |
17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝐷 ∈ ℕ ) |
18 |
17
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝐷 ∈ ℤ ) |
19 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
22 |
21
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
23 |
14
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑘 ∥ 𝐷 ) |
24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝐷 ∥ ( ♯ ‘ 𝐵 ) ) |
25 |
16 18 22 23 24
|
dvdstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) |
26 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) → 𝜑 ) |
27 |
12 15
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) → 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) |
28 |
26 27
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) → ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ) |
29 |
12 23
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) → 𝑘 ∥ 𝐷 ) |
30 |
28 29
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) → ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ) |
31 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ↔ ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) = 𝑘 ) ) |
32 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐺 ∈ Grp ) |
33 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝑙 · 𝑘 ) = 𝐷 ) |
34 |
33
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐷 = ( 𝑙 · 𝑘 ) ) |
35 |
34
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝐷 / 𝑘 ) = ( ( 𝑙 · 𝑘 ) / 𝑘 ) ) |
36 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝑙 ∈ ℕ ) |
37 |
36
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝑙 ∈ ℂ ) |
38 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) → 𝑘 ∈ ℤ ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) → 𝑘 ∈ ℤ ) |
40 |
39
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝑘 ∈ ℤ ) |
41 |
40
|
zcnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝑘 ∈ ℂ ) |
42 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) → 1 ≤ 𝑘 ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) → 1 ≤ 𝑘 ) |
44 |
39 43
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
45 |
|
elnnz1 |
⊢ ( 𝑘 ∈ ℕ ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
46 |
44 45
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) → 𝑘 ∈ ℕ ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) → 𝑘 ∈ ℕ ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝑘 ∈ ℕ ) |
49 |
48
|
nnne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝑘 ≠ 0 ) |
50 |
37 41 49
|
divcan4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝑙 · 𝑘 ) / 𝑘 ) = 𝑙 ) |
51 |
35 50
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝐷 / 𝑘 ) = 𝑙 ) |
52 |
51 36
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝐷 / 𝑘 ) ∈ ℕ ) |
53 |
52
|
nnnn0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝐷 / 𝑘 ) ∈ ℕ0 ) |
54 |
53
|
nn0zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝐷 / 𝑘 ) ∈ ℤ ) |
55 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐴 ∈ 𝐵 ) |
56 |
1 2 32 54 55
|
mulgcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ∈ 𝐵 ) |
57 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) → 𝐷 ∈ ℕ ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐷 ∈ ℕ ) |
59 |
58
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐷 ∈ ℂ ) |
60 |
59 41 49
|
divcan1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) · 𝑘 ) = 𝐷 ) |
61 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = 𝐷 ) |
62 |
61
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐷 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |
63 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
64 |
1 63 2
|
odmulg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐷 / 𝑘 ) ∈ ℤ ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = ( ( ( 𝐷 / 𝑘 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ) ) |
65 |
32 55 54 64
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = ( ( ( 𝐷 / 𝑘 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ) ) |
66 |
62 65
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐷 = ( ( ( 𝐷 / 𝑘 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ) ) |
67 |
61
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( 𝐷 / 𝑘 ) gcd 𝐷 ) ) |
68 |
59 41 49
|
divcan2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝑘 · ( 𝐷 / 𝑘 ) ) = 𝐷 ) |
69 |
68
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐷 = ( 𝑘 · ( 𝐷 / 𝑘 ) ) ) |
70 |
69
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) gcd 𝐷 ) = ( ( 𝐷 / 𝑘 ) gcd ( 𝑘 · ( 𝐷 / 𝑘 ) ) ) ) |
71 |
53 40
|
gcdmultipled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) gcd ( 𝑘 · ( 𝐷 / 𝑘 ) ) ) = ( 𝐷 / 𝑘 ) ) |
72 |
70 71
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) gcd 𝐷 ) = ( 𝐷 / 𝑘 ) ) |
73 |
67 72
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝐷 / 𝑘 ) ) |
74 |
73
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( ( 𝐷 / 𝑘 ) gcd ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) · ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ) = ( ( 𝐷 / 𝑘 ) · ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ) ) |
75 |
66 74
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐷 = ( ( 𝐷 / 𝑘 ) · ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ) ) |
76 |
60 75
|
eqtr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) · ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ) = ( ( 𝐷 / 𝑘 ) · 𝑘 ) ) |
77 |
1 63 56
|
odcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ∈ ℕ0 ) |
78 |
77
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ∈ ℂ ) |
79 |
54
|
zcnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝐷 / 𝑘 ) ∈ ℂ ) |
80 |
58
|
nnne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → 𝐷 ≠ 0 ) |
81 |
59 41 80 49
|
divne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( 𝐷 / 𝑘 ) ≠ 0 ) |
82 |
78 41 79 81
|
mulcand |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( ( 𝐷 / 𝑘 ) · ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) ) = ( ( 𝐷 / 𝑘 ) · 𝑘 ) ↔ ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) = 𝑘 ) ) |
83 |
76 82
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ) = 𝑘 ) |
84 |
31 56 83
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → ( ( 𝐷 / 𝑘 ) ↑ 𝐴 ) ∈ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
85 |
84
|
ne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) ∧ 𝑙 ∈ ℕ ) ∧ ( 𝑙 · 𝑘 ) = 𝐷 ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
86 |
|
nndivides |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝑘 ∥ 𝐷 ↔ ∃ 𝑙 ∈ ℕ ( 𝑙 · 𝑘 ) = 𝐷 ) ) |
87 |
47 57 86
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) → ( 𝑘 ∥ 𝐷 ↔ ∃ 𝑙 ∈ ℕ ( 𝑙 · 𝑘 ) = 𝐷 ) ) |
88 |
87
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) → ( 𝑘 ∥ 𝐷 → ∃ 𝑙 ∈ ℕ ( 𝑙 · 𝑘 ) = 𝐷 ) ) |
89 |
88
|
syldbl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) → ∃ 𝑙 ∈ ℕ ( 𝑙 · 𝑘 ) = 𝐷 ) |
90 |
85 89
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) ∧ 𝑘 ∥ 𝐷 ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
91 |
30 90
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
92 |
91
|
ex |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑘 ∥ 𝐷 ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
94 |
14 93
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) |
95 |
25 94
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
96 |
15 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 1 ≤ 𝑘 ) |
97 |
16 96
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
98 |
97 45
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑘 ∈ ℕ ) |
99 |
98
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑘 ∈ ℝ ) |
100 |
17
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝐷 ∈ ℝ ) |
101 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 1 ∈ ℝ ) |
102 |
100 101
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( 𝐷 − 1 ) ∈ ℝ ) |
103 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐷 − 1 ) ) → 𝑘 ≤ ( 𝐷 − 1 ) ) |
104 |
15 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑘 ≤ ( 𝐷 − 1 ) ) |
105 |
100
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( 𝐷 − 1 ) < 𝐷 ) |
106 |
99 102 100 104 105
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑘 < 𝐷 ) |
107 |
|
breq1 |
⊢ ( 𝑐 = 𝑘 → ( 𝑐 < 𝐷 ↔ 𝑘 < 𝐷 ) ) |
108 |
|
breq1 |
⊢ ( 𝑐 = 𝑘 → ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑘 ∥ ( ♯ ‘ 𝐵 ) ) ) |
109 |
|
eqeq2 |
⊢ ( 𝑐 = 𝑘 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ) ) |
110 |
109
|
rabbidv |
⊢ ( 𝑐 = 𝑘 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) |
111 |
110
|
neeq1d |
⊢ ( 𝑐 = 𝑘 → ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) |
112 |
108 111
|
anbi12d |
⊢ ( 𝑐 = 𝑘 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) ↔ ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) ) ) |
113 |
110
|
fveq2d |
⊢ ( 𝑐 = 𝑘 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
114 |
|
fveq2 |
⊢ ( 𝑐 = 𝑘 → ( ϕ ‘ 𝑐 ) = ( ϕ ‘ 𝑘 ) ) |
115 |
113 114
|
eqeq12d |
⊢ ( 𝑐 = 𝑘 → ( ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) |
116 |
112 115
|
imbi12d |
⊢ ( 𝑐 = 𝑘 → ( ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ↔ ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) ) |
117 |
107 116
|
imbi12d |
⊢ ( 𝑐 = 𝑘 → ( ( 𝑐 < 𝐷 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ↔ ( 𝑘 < 𝐷 → ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) ) ) |
118 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ∀ 𝑐 ∈ ℕ ( 𝑐 < 𝐷 → ( ( 𝑐 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑐 } ) = ( ϕ ‘ 𝑐 ) ) ) ) |
119 |
117 118 98
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( 𝑘 < 𝐷 → ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) ) |
120 |
106 119
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( ( 𝑘 ∥ ( ♯ ‘ 𝐵 ) ∧ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) ) |
121 |
95 120
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ϕ ‘ 𝑘 ) ) |
122 |
121
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) ) |
123 |
122
|
eqcomd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
124 |
123
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) + ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) = ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) + ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) ) |
125 |
|
elun |
⊢ ( 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ↔ ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) ) |
126 |
125
|
biimpi |
⊢ ( 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) → ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) ) |
127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ) → ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) ) |
128 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 1 ∈ ℤ ) |
129 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝐷 ∈ ℕ ) |
130 |
129
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝐷 ∈ ℤ ) |
131 |
|
elfzelz |
⊢ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) → 𝑎 ∈ ℤ ) |
132 |
131
|
adantr |
⊢ ( ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) → 𝑎 ∈ ℤ ) |
133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝑎 ∈ ℤ ) |
134 |
|
elfzle1 |
⊢ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) → 1 ≤ 𝑎 ) |
135 |
134
|
adantr |
⊢ ( ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) → 1 ≤ 𝑎 ) |
136 |
135
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 1 ≤ 𝑎 ) |
137 |
133
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝑎 ∈ ℝ ) |
138 |
129
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝐷 ∈ ℝ ) |
139 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 1 ∈ ℝ ) |
140 |
138 139
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → ( 𝐷 − 1 ) ∈ ℝ ) |
141 |
|
elfzle2 |
⊢ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) → 𝑎 ≤ ( 𝐷 − 1 ) ) |
142 |
141
|
adantr |
⊢ ( ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) → 𝑎 ≤ ( 𝐷 − 1 ) ) |
143 |
142
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝑎 ≤ ( 𝐷 − 1 ) ) |
144 |
138
|
ltm1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → ( 𝐷 − 1 ) < 𝐷 ) |
145 |
137 140 138 143 144
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝑎 < 𝐷 ) |
146 |
137 138 145
|
ltled |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝑎 ≤ 𝐷 ) |
147 |
128 130 133 136 146
|
elfzd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝑎 ∈ ( 1 ... 𝐷 ) ) |
148 |
147
|
rabss3d |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ⊆ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
149 |
148
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
150 |
149
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
151 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝐷 } → 𝑦 = 𝐷 ) |
152 |
151
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝐷 } ) → 𝑦 = 𝐷 ) |
153 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐷 ) → 𝑦 = 𝐷 ) |
154 |
|
breq1 |
⊢ ( 𝑎 = 𝐷 → ( 𝑎 ∥ 𝐷 ↔ 𝐷 ∥ 𝐷 ) ) |
155 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
156 |
6
|
nnzd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
157 |
6
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐷 ) |
158 |
6
|
nnred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
159 |
158
|
leidd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐷 ) |
160 |
155 156 156 157 159
|
elfzd |
⊢ ( 𝜑 → 𝐷 ∈ ( 1 ... 𝐷 ) ) |
161 |
|
iddvds |
⊢ ( 𝐷 ∈ ℤ → 𝐷 ∥ 𝐷 ) |
162 |
156 161
|
syl |
⊢ ( 𝜑 → 𝐷 ∥ 𝐷 ) |
163 |
154 160 162
|
elrabd |
⊢ ( 𝜑 → 𝐷 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐷 ) → 𝐷 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
165 |
153 164
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐷 ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
166 |
165
|
ex |
⊢ ( 𝜑 → ( 𝑦 = 𝐷 → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝐷 } ) → ( 𝑦 = 𝐷 → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
168 |
152 167
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝐷 } ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
169 |
150 168
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
170 |
169
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
171 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ) → ( ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
172 |
127 171
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
173 |
172
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
174 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ 𝑦 = 𝐷 ) → 𝑦 = 𝐷 ) |
175 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ 𝑦 = 𝐷 ) → 𝐷 = 𝐷 ) |
176 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ 𝑦 = 𝐷 ) → 𝐷 ∈ ℕ ) |
177 |
|
elsng |
⊢ ( 𝐷 ∈ ℕ → ( 𝐷 ∈ { 𝐷 } ↔ 𝐷 = 𝐷 ) ) |
178 |
176 177
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ 𝑦 = 𝐷 ) → ( 𝐷 ∈ { 𝐷 } ↔ 𝐷 = 𝐷 ) ) |
179 |
175 178
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ 𝑦 = 𝐷 ) → 𝐷 ∈ { 𝐷 } ) |
180 |
174 179
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ 𝑦 = 𝐷 ) → 𝑦 ∈ { 𝐷 } ) |
181 |
180
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ 𝑦 = 𝐷 ) → ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) ) |
182 |
|
breq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 ∥ 𝐷 ↔ 𝑦 ∥ 𝐷 ) ) |
183 |
182
|
elrab |
⊢ ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ↔ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) |
184 |
183
|
biimpi |
⊢ ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } → ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) |
185 |
184
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) → ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) |
186 |
185
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) → ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) |
187 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 1 ∈ ℤ ) |
188 |
156
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝐷 ∈ ℤ ) |
189 |
188 187
|
zsubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → ( 𝐷 − 1 ) ∈ ℤ ) |
190 |
|
elfzelz |
⊢ ( 𝑦 ∈ ( 1 ... 𝐷 ) → 𝑦 ∈ ℤ ) |
191 |
190
|
adantr |
⊢ ( ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) → 𝑦 ∈ ℤ ) |
192 |
191
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝑦 ∈ ℤ ) |
193 |
|
elfzle1 |
⊢ ( 𝑦 ∈ ( 1 ... 𝐷 ) → 1 ≤ 𝑦 ) |
194 |
193
|
adantr |
⊢ ( ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) → 1 ≤ 𝑦 ) |
195 |
194
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 1 ≤ 𝑦 ) |
196 |
|
elfzle2 |
⊢ ( 𝑦 ∈ ( 1 ... 𝐷 ) → 𝑦 ≤ 𝐷 ) |
197 |
196
|
adantr |
⊢ ( ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) → 𝑦 ≤ 𝐷 ) |
198 |
197
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝑦 ≤ 𝐷 ) |
199 |
|
neqne |
⊢ ( ¬ 𝑦 = 𝐷 → 𝑦 ≠ 𝐷 ) |
200 |
199
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) → 𝑦 ≠ 𝐷 ) |
201 |
200
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) → 𝐷 ≠ 𝑦 ) |
202 |
201
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝐷 ≠ 𝑦 ) |
203 |
198 202
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → ( 𝑦 ≤ 𝐷 ∧ 𝐷 ≠ 𝑦 ) ) |
204 |
192
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝑦 ∈ ℝ ) |
205 |
158
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝐷 ∈ ℝ ) |
206 |
204 205
|
ltlend |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → ( 𝑦 < 𝐷 ↔ ( 𝑦 ≤ 𝐷 ∧ 𝐷 ≠ 𝑦 ) ) ) |
207 |
203 206
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝑦 < 𝐷 ) |
208 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝐷 ∈ ℕ ) |
209 |
208
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝐷 ∈ ℤ ) |
210 |
192 209
|
zltlem1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → ( 𝑦 < 𝐷 ↔ 𝑦 ≤ ( 𝐷 − 1 ) ) ) |
211 |
207 210
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝑦 ≤ ( 𝐷 − 1 ) ) |
212 |
187 189 192 195 211
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝑦 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) |
213 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝑦 ∥ 𝐷 ) |
214 |
182 212 213
|
elrabd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) ∧ ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) |
215 |
214
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) → ( ( 𝑦 ∈ ( 1 ... 𝐷 ) ∧ 𝑦 ∥ 𝐷 ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) ) |
216 |
186 215
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) |
217 |
216
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ∧ ¬ 𝑦 = 𝐷 ) → ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) ) |
218 |
181 217
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) → ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∨ 𝑦 ∈ { 𝐷 } ) ) |
219 |
218 125
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) → 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ) |
220 |
219
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } → 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ) ) |
221 |
173 220
|
impbid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ↔ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
222 |
221
|
eqrdv |
⊢ ( 𝜑 → ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) = { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
223 |
222
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) ) |
224 |
|
phisum |
⊢ ( 𝐷 ∈ ℕ → Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) = 𝐷 ) |
225 |
6 224
|
syl |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) = 𝐷 ) |
226 |
|
eqcom |
⊢ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = 𝐷 ↔ 𝐷 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |
227 |
226
|
imbi2i |
⊢ ( ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝐴 ) = 𝐷 ) ↔ ( 𝜑 → 𝐷 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
228 |
9 227
|
mpbi |
⊢ ( 𝜑 → 𝐷 = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |
229 |
228
|
oveq1d |
⊢ ( 𝜑 → ( 𝐷 ↑ 𝑥 ) = ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) ) |
230 |
229
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
231 |
230
|
rabbidv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝐷 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } = { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) |
232 |
231
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝐷 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
233 |
1 2 3 4 5 8
|
unitscyglem1 |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |
234 |
232 233
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝐷 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) = ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) |
235 |
234 9
|
eqtr2d |
⊢ ( 𝜑 → 𝐷 = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝐷 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
236 |
1 2 3 4 6
|
grpods |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( 𝐷 ↑ 𝑥 ) = ( 0g ‘ 𝐺 ) } ) ) |
237 |
235 236
|
eqtr4d |
⊢ ( 𝜑 → 𝐷 = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
238 |
222
|
eqcomd |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } = ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ) |
239 |
238
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
240 |
237 239
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
241 |
225 240
|
eqtr2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) ) |
242 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 1 ∈ ℤ ) |
243 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 𝐷 ∈ ℤ ) |
244 |
182
|
elrab |
⊢ ( 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐷 ) ) |
245 |
244
|
biimpi |
⊢ ( 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } → ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐷 ) ) |
246 |
245
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐷 ) ) |
247 |
246
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 𝑦 ∈ ℕ ) |
248 |
247
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 𝑦 ∈ ℤ ) |
249 |
247
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 1 ≤ 𝑦 ) |
250 |
246
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 𝑦 ∥ 𝐷 ) |
251 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 𝐷 ∈ ℕ ) |
252 |
|
dvdsle |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) |
253 |
248 251 252
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) |
254 |
250 253
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 𝑦 ≤ 𝐷 ) |
255 |
242 243 248 249 254
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 𝑦 ∈ ( 1 ... 𝐷 ) ) |
256 |
182 255 250
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
257 |
256
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } → 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
258 |
|
elfzelz |
⊢ ( 𝑎 ∈ ( 1 ... 𝐷 ) → 𝑎 ∈ ℤ ) |
259 |
|
elfzle1 |
⊢ ( 𝑎 ∈ ( 1 ... 𝐷 ) → 1 ≤ 𝑎 ) |
260 |
258 259
|
jca |
⊢ ( 𝑎 ∈ ( 1 ... 𝐷 ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
261 |
260
|
adantr |
⊢ ( ( 𝑎 ∈ ( 1 ... 𝐷 ) ∧ 𝑎 ∥ 𝐷 ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
262 |
261
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐷 ) ∧ 𝑎 ∥ 𝐷 ) ) → ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
263 |
|
elnnz1 |
⊢ ( 𝑎 ∈ ℕ ↔ ( 𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ) ) |
264 |
262 263
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐷 ) ∧ 𝑎 ∥ 𝐷 ) ) → 𝑎 ∈ ℕ ) |
265 |
264
|
rabss3d |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ⊆ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) |
266 |
265
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } → 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ) ) |
267 |
257 266
|
impbid |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ↔ 𝑦 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) ) |
268 |
267
|
eqrdv |
⊢ ( 𝜑 → { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } = { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ) |
269 |
268
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) ) |
270 |
241 269
|
eqtr2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... 𝐷 ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
271 |
223 270
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ϕ ‘ 𝑘 ) = Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ) |
272 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
273 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) |
274 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( 𝐷 − 1 ) ) ∈ Fin ) |
275 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ⊆ ( 1 ... ( 𝐷 − 1 ) ) |
276 |
275
|
a1i |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ⊆ ( 1 ... ( 𝐷 − 1 ) ) ) |
277 |
274 276
|
ssfid |
⊢ ( 𝜑 → { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∈ Fin ) |
278 |
154
|
elrab |
⊢ ( 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ↔ ( 𝐷 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝐷 ∥ 𝐷 ) ) |
279 |
278
|
biimpi |
⊢ ( 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } → ( 𝐷 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∧ 𝐷 ∥ 𝐷 ) ) |
280 |
279
|
simpld |
⊢ ( 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } → 𝐷 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) |
281 |
280
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝐷 ∈ ( 1 ... ( 𝐷 − 1 ) ) ) |
282 |
|
elfzle2 |
⊢ ( 𝐷 ∈ ( 1 ... ( 𝐷 − 1 ) ) → 𝐷 ≤ ( 𝐷 − 1 ) ) |
283 |
281 282
|
syl |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝐷 ≤ ( 𝐷 − 1 ) ) |
284 |
158
|
ltm1d |
⊢ ( 𝜑 → ( 𝐷 − 1 ) < 𝐷 ) |
285 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
286 |
158 285
|
resubcld |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℝ ) |
287 |
286 158
|
ltnled |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) < 𝐷 ↔ ¬ 𝐷 ≤ ( 𝐷 − 1 ) ) ) |
288 |
284 287
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐷 ≤ ( 𝐷 − 1 ) ) |
289 |
288
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ¬ 𝐷 ≤ ( 𝐷 − 1 ) ) |
290 |
283 289
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ¬ 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) |
291 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ¬ 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) |
292 |
290 291
|
pm2.61dan |
⊢ ( 𝜑 → ¬ 𝐷 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) |
293 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → 𝐵 ∈ Fin ) |
294 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 |
295 |
294
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ⊆ 𝐵 ) |
296 |
293 295
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin ) |
297 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
298 |
296 297
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℕ0 ) |
299 |
298
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) ∈ ℂ ) |
300 |
|
eqeq2 |
⊢ ( 𝑘 = 𝐷 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 ) ) |
301 |
300
|
rabbidv |
⊢ ( 𝑘 = 𝐷 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } = { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) |
302 |
301
|
fveq2d |
⊢ ( 𝑘 = 𝐷 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) |
303 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ⊆ 𝐵 |
304 |
303
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ⊆ 𝐵 ) |
305 |
4 304
|
ssfid |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ∈ Fin ) |
306 |
|
hashcl |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ∈ ℕ0 ) |
307 |
305 306
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ∈ ℕ0 ) |
308 |
307
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ∈ ℂ ) |
309 |
272 273 277 6 292 299 302 308
|
fsumsplitsn |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) = ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) + ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) ) |
310 |
271 309
|
eqtr2d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) + ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) = Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ϕ ‘ 𝑘 ) ) |
311 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ϕ ‘ 𝐷 ) |
312 |
121 299
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ) → ( ϕ ‘ 𝑘 ) ∈ ℂ ) |
313 |
|
fveq2 |
⊢ ( 𝑘 = 𝐷 → ( ϕ ‘ 𝑘 ) = ( ϕ ‘ 𝐷 ) ) |
314 |
6
|
phicld |
⊢ ( 𝜑 → ( ϕ ‘ 𝐷 ) ∈ ℕ ) |
315 |
314
|
nncnd |
⊢ ( 𝜑 → ( ϕ ‘ 𝐷 ) ∈ ℂ ) |
316 |
272 311 277 6 292 312 313 315
|
fsumsplitsn |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ∪ { 𝐷 } ) ( ϕ ‘ 𝑘 ) = ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) + ( ϕ ‘ 𝐷 ) ) ) |
317 |
310 316
|
eqtrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝑘 } ) + ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) = ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) + ( ϕ ‘ 𝐷 ) ) ) |
318 |
124 317
|
eqtrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) + ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) = ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) + ( ϕ ‘ 𝐷 ) ) ) |
319 |
277 312
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) ∈ ℂ ) |
320 |
319 308 315
|
addcand |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) + ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) ) = ( Σ 𝑘 ∈ { 𝑎 ∈ ( 1 ... ( 𝐷 − 1 ) ) ∣ 𝑎 ∥ 𝐷 } ( ϕ ‘ 𝑘 ) + ( ϕ ‘ 𝐷 ) ) ↔ ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) ) |
321 |
318 320
|
mpbid |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝐵 ∣ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐷 } ) = ( ϕ ‘ 𝐷 ) ) |