| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem1.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | unitscyglem1.2 | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | unitscyglem1.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | unitscyglem1.4 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 5 |  | unitscyglem1.5 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝑛  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  ≤  𝑛 ) | 
						
							| 6 |  | unitscyglem2.1 | ⊢ ( 𝜑  →  𝐷  ∈  ℕ ) | 
						
							| 7 |  | unitscyglem2.2 | ⊢ ( 𝜑  →  𝐷  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 8 |  | unitscyglem2.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 9 |  | unitscyglem2.4 | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  𝐷 ) | 
						
							| 10 |  | unitscyglem2.5 | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝐷  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑎  =  𝑘  →  ( 𝑎  ∥  𝐷  ↔  𝑘  ∥  𝐷 ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ↔  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) ) | 
						
							| 13 | 12 | biimpi | ⊢ ( 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  →  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) ) | 
						
							| 16 | 15 | elfzelzd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑘  ∈  ℤ ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝐷  ∈  ℕ ) | 
						
							| 18 | 17 | nnzd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝐷  ∈  ℤ ) | 
						
							| 19 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 20 | 4 19 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 22 | 21 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 23 | 14 | simprd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑘  ∥  𝐷 ) | 
						
							| 24 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝐷  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 25 | 16 18 22 23 24 | dvdstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 26 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) )  →  𝜑 ) | 
						
							| 27 | 12 15 | sylan2br | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) )  →  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) ) | 
						
							| 28 | 26 27 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) )  →  ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) ) ) | 
						
							| 29 | 12 23 | sylan2br | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) )  →  𝑘  ∥  𝐷 ) | 
						
							| 30 | 28 29 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) )  →  ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 ) ) | 
						
							| 31 |  | fveqeq2 | ⊢ ( 𝑥  =  ( ( 𝐷  /  𝑘 )  ↑  𝐴 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ↔  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) )  =  𝑘 ) ) | 
						
							| 32 | 3 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐺  ∈  Grp ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝑙  ·  𝑘 )  =  𝐷 ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐷  =  ( 𝑙  ·  𝑘 ) ) | 
						
							| 35 | 34 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝐷  /  𝑘 )  =  ( ( 𝑙  ·  𝑘 )  /  𝑘 ) ) | 
						
							| 36 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝑙  ∈  ℕ ) | 
						
							| 37 | 36 | nncnd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝑙  ∈  ℂ ) | 
						
							| 38 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 40 | 39 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝑘  ∈  ℤ ) | 
						
							| 41 | 40 | zcnd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝑘  ∈  ℂ ) | 
						
							| 42 |  | elfzle1 | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  →  1  ≤  𝑘 ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  →  1  ≤  𝑘 ) | 
						
							| 44 | 39 43 | jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 45 |  | elnnz1 | ⊢ ( 𝑘  ∈  ℕ  ↔  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 46 | 44 45 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  →  𝑘  ∈  ℕ ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝑘  ∈  ℕ ) | 
						
							| 49 | 48 | nnne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝑘  ≠  0 ) | 
						
							| 50 | 37 41 49 | divcan4d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝑙  ·  𝑘 )  /  𝑘 )  =  𝑙 ) | 
						
							| 51 | 35 50 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝐷  /  𝑘 )  =  𝑙 ) | 
						
							| 52 | 51 36 | eqeltrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝐷  /  𝑘 )  ∈  ℕ ) | 
						
							| 53 | 52 | nnnn0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝐷  /  𝑘 )  ∈  ℕ0 ) | 
						
							| 54 | 53 | nn0zd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝐷  /  𝑘 )  ∈  ℤ ) | 
						
							| 55 | 8 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐴  ∈  𝐵 ) | 
						
							| 56 | 1 2 32 54 55 | mulgcld | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  ↑  𝐴 )  ∈  𝐵 ) | 
						
							| 57 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  →  𝐷  ∈  ℕ ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐷  ∈  ℕ ) | 
						
							| 59 | 58 | nncnd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐷  ∈  ℂ ) | 
						
							| 60 | 59 41 49 | divcan1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  ·  𝑘 )  =  𝐷 ) | 
						
							| 61 | 9 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  𝐷 ) | 
						
							| 62 | 61 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐷  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) | 
						
							| 63 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 64 | 1 63 2 | odmulg | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝐵  ∧  ( 𝐷  /  𝑘 )  ∈  ℤ )  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  ( ( ( 𝐷  /  𝑘 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) ) ) ) | 
						
							| 65 | 32 55 54 64 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  ( ( ( 𝐷  /  𝑘 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) ) ) ) | 
						
							| 66 | 62 65 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐷  =  ( ( ( 𝐷  /  𝑘 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) ) ) ) | 
						
							| 67 | 61 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( ( 𝐷  /  𝑘 )  gcd  𝐷 ) ) | 
						
							| 68 | 59 41 49 | divcan2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝑘  ·  ( 𝐷  /  𝑘 ) )  =  𝐷 ) | 
						
							| 69 | 68 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐷  =  ( 𝑘  ·  ( 𝐷  /  𝑘 ) ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  gcd  𝐷 )  =  ( ( 𝐷  /  𝑘 )  gcd  ( 𝑘  ·  ( 𝐷  /  𝑘 ) ) ) ) | 
						
							| 71 | 53 40 | gcdmultipled | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  gcd  ( 𝑘  ·  ( 𝐷  /  𝑘 ) ) )  =  ( 𝐷  /  𝑘 ) ) | 
						
							| 72 | 70 71 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  gcd  𝐷 )  =  ( 𝐷  /  𝑘 ) ) | 
						
							| 73 | 67 72 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( 𝐷  /  𝑘 ) ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( ( 𝐷  /  𝑘 )  gcd  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) ) )  =  ( ( 𝐷  /  𝑘 )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) ) ) ) | 
						
							| 75 | 66 74 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐷  =  ( ( 𝐷  /  𝑘 )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) ) ) ) | 
						
							| 76 | 60 75 | eqtr2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) ) )  =  ( ( 𝐷  /  𝑘 )  ·  𝑘 ) ) | 
						
							| 77 | 1 63 56 | odcld | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) )  ∈  ℕ0 ) | 
						
							| 78 | 77 | nn0cnd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) )  ∈  ℂ ) | 
						
							| 79 | 54 | zcnd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝐷  /  𝑘 )  ∈  ℂ ) | 
						
							| 80 | 58 | nnne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  𝐷  ≠  0 ) | 
						
							| 81 | 59 41 80 49 | divne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( 𝐷  /  𝑘 )  ≠  0 ) | 
						
							| 82 | 78 41 79 81 | mulcand | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( ( 𝐷  /  𝑘 )  ·  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) ) )  =  ( ( 𝐷  /  𝑘 )  ·  𝑘 )  ↔  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) )  =  𝑘 ) ) | 
						
							| 83 | 76 82 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( od ‘ 𝐺 ) ‘ ( ( 𝐷  /  𝑘 )  ↑  𝐴 ) )  =  𝑘 ) | 
						
							| 84 | 31 56 83 | elrabd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  ( ( 𝐷  /  𝑘 )  ↑  𝐴 )  ∈  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 85 | 84 | ne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  ∧  𝑙  ∈  ℕ )  ∧  ( 𝑙  ·  𝑘 )  =  𝐷 )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) | 
						
							| 86 |  | nndivides | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝑘  ∥  𝐷  ↔  ∃ 𝑙  ∈  ℕ ( 𝑙  ·  𝑘 )  =  𝐷 ) ) | 
						
							| 87 | 47 57 86 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  →  ( 𝑘  ∥  𝐷  ↔  ∃ 𝑙  ∈  ℕ ( 𝑙  ·  𝑘 )  =  𝐷 ) ) | 
						
							| 88 | 87 | biimpd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  →  ( 𝑘  ∥  𝐷  →  ∃ 𝑙  ∈  ℕ ( 𝑙  ·  𝑘 )  =  𝐷 ) ) | 
						
							| 89 | 88 | syldbl2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  →  ∃ 𝑙  ∈  ℕ ( 𝑙  ·  𝑘 )  =  𝐷 ) | 
						
							| 90 | 85 89 | r19.29a | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) ) )  ∧  𝑘  ∥  𝐷 )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) | 
						
							| 91 | 30 90 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 ) )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) | 
						
							| 92 | 91 | ex | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑘  ∥  𝐷 )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) | 
						
							| 94 | 14 93 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) | 
						
							| 95 | 25 94 | jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) | 
						
							| 96 | 15 42 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  1  ≤  𝑘 ) | 
						
							| 97 | 16 96 | jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( 𝑘  ∈  ℤ  ∧  1  ≤  𝑘 ) ) | 
						
							| 98 | 97 45 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑘  ∈  ℕ ) | 
						
							| 99 | 98 | nnred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑘  ∈  ℝ ) | 
						
							| 100 | 17 | nnred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝐷  ∈  ℝ ) | 
						
							| 101 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  1  ∈  ℝ ) | 
						
							| 102 | 100 101 | resubcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( 𝐷  −  1 )  ∈  ℝ ) | 
						
							| 103 |  | elfzle2 | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝐷  −  1 ) )  →  𝑘  ≤  ( 𝐷  −  1 ) ) | 
						
							| 104 | 15 103 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑘  ≤  ( 𝐷  −  1 ) ) | 
						
							| 105 | 100 | ltm1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( 𝐷  −  1 )  <  𝐷 ) | 
						
							| 106 | 99 102 100 104 105 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑘  <  𝐷 ) | 
						
							| 107 |  | breq1 | ⊢ ( 𝑐  =  𝑘  →  ( 𝑐  <  𝐷  ↔  𝑘  <  𝐷 ) ) | 
						
							| 108 |  | breq1 | ⊢ ( 𝑐  =  𝑘  →  ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ↔  𝑘  ∥  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 109 |  | eqeq2 | ⊢ ( 𝑐  =  𝑘  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 ) ) | 
						
							| 110 | 109 | rabbidv | ⊢ ( 𝑐  =  𝑘  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) | 
						
							| 111 | 110 | neeq1d | ⊢ ( 𝑐  =  𝑘  →  ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅  ↔  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) | 
						
							| 112 | 108 111 | anbi12d | ⊢ ( 𝑐  =  𝑘  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  ↔  ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ ) ) ) | 
						
							| 113 | 110 | fveq2d | ⊢ ( 𝑐  =  𝑘  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 114 |  | fveq2 | ⊢ ( 𝑐  =  𝑘  →  ( ϕ ‘ 𝑐 )  =  ( ϕ ‘ 𝑘 ) ) | 
						
							| 115 | 113 114 | eqeq12d | ⊢ ( 𝑐  =  𝑘  →  ( ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 )  ↔  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 116 | 112 115 | imbi12d | ⊢ ( 𝑐  =  𝑘  →  ( ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) )  ↔  ( ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) ) | 
						
							| 117 | 107 116 | imbi12d | ⊢ ( 𝑐  =  𝑘  →  ( ( 𝑐  <  𝐷  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) )  ↔  ( 𝑘  <  𝐷  →  ( ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) ) ) | 
						
							| 118 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ∀ 𝑐  ∈  ℕ ( 𝑐  <  𝐷  →  ( ( 𝑐  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑐 } )  =  ( ϕ ‘ 𝑐 ) ) ) ) | 
						
							| 119 | 117 118 98 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( 𝑘  <  𝐷  →  ( ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) ) | 
						
							| 120 | 106 119 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( ( 𝑘  ∥  ( ♯ ‘ 𝐵 )  ∧  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ≠  ∅ )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) ) | 
						
							| 121 | 95 120 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ϕ ‘ 𝑘 ) ) | 
						
							| 122 | 121 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 ) ) | 
						
							| 123 | 122 | eqcomd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  =  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 124 | 123 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  +  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) )  =  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  +  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) ) ) | 
						
							| 125 |  | elun | ⊢ ( 𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } )  ↔  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } ) ) | 
						
							| 126 | 125 | biimpi | ⊢ ( 𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } )  →  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } ) ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) )  →  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } ) ) | 
						
							| 128 |  | 1zzd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  1  ∈  ℤ ) | 
						
							| 129 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝐷  ∈  ℕ ) | 
						
							| 130 | 129 | nnzd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝐷  ∈  ℤ ) | 
						
							| 131 |  | elfzelz | ⊢ ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  →  𝑎  ∈  ℤ ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 )  →  𝑎  ∈  ℤ ) | 
						
							| 133 | 132 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝑎  ∈  ℤ ) | 
						
							| 134 |  | elfzle1 | ⊢ ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  →  1  ≤  𝑎 ) | 
						
							| 135 | 134 | adantr | ⊢ ( ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 )  →  1  ≤  𝑎 ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  1  ≤  𝑎 ) | 
						
							| 137 | 133 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝑎  ∈  ℝ ) | 
						
							| 138 | 129 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 139 |  | 1red | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  1  ∈  ℝ ) | 
						
							| 140 | 138 139 | resubcld | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  ( 𝐷  −  1 )  ∈  ℝ ) | 
						
							| 141 |  | elfzle2 | ⊢ ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  →  𝑎  ≤  ( 𝐷  −  1 ) ) | 
						
							| 142 | 141 | adantr | ⊢ ( ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 )  →  𝑎  ≤  ( 𝐷  −  1 ) ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝑎  ≤  ( 𝐷  −  1 ) ) | 
						
							| 144 | 138 | ltm1d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  ( 𝐷  −  1 )  <  𝐷 ) | 
						
							| 145 | 137 140 138 143 144 | lelttrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝑎  <  𝐷 ) | 
						
							| 146 | 137 138 145 | ltled | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝑎  ≤  𝐷 ) | 
						
							| 147 | 128 130 133 136 146 | elfzd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝑎  ∥  𝐷 ) )  →  𝑎  ∈  ( 1 ... 𝐷 ) ) | 
						
							| 148 | 147 | rabss3d | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ⊆  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 149 | 148 | sseld | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 150 | 149 | imp | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 151 |  | elsni | ⊢ ( 𝑦  ∈  { 𝐷 }  →  𝑦  =  𝐷 ) | 
						
							| 152 | 151 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝐷 } )  →  𝑦  =  𝐷 ) | 
						
							| 153 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐷 )  →  𝑦  =  𝐷 ) | 
						
							| 154 |  | breq1 | ⊢ ( 𝑎  =  𝐷  →  ( 𝑎  ∥  𝐷  ↔  𝐷  ∥  𝐷 ) ) | 
						
							| 155 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 156 | 6 | nnzd | ⊢ ( 𝜑  →  𝐷  ∈  ℤ ) | 
						
							| 157 | 6 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝐷 ) | 
						
							| 158 | 6 | nnred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 159 | 158 | leidd | ⊢ ( 𝜑  →  𝐷  ≤  𝐷 ) | 
						
							| 160 | 155 156 156 157 159 | elfzd | ⊢ ( 𝜑  →  𝐷  ∈  ( 1 ... 𝐷 ) ) | 
						
							| 161 |  | iddvds | ⊢ ( 𝐷  ∈  ℤ  →  𝐷  ∥  𝐷 ) | 
						
							| 162 | 156 161 | syl | ⊢ ( 𝜑  →  𝐷  ∥  𝐷 ) | 
						
							| 163 | 154 160 162 | elrabd | ⊢ ( 𝜑  →  𝐷  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐷 )  →  𝐷  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 165 | 153 164 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  =  𝐷 )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 166 | 165 | ex | ⊢ ( 𝜑  →  ( 𝑦  =  𝐷  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝐷 } )  →  ( 𝑦  =  𝐷  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 168 | 152 167 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝐷 } )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 169 | 150 168 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } ) )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 170 | 169 | ex | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 171 | 170 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) )  →  ( ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 172 | 127 171 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 173 | 172 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 174 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  𝑦  =  𝐷 )  →  𝑦  =  𝐷 ) | 
						
							| 175 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  𝑦  =  𝐷 )  →  𝐷  =  𝐷 ) | 
						
							| 176 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  𝑦  =  𝐷 )  →  𝐷  ∈  ℕ ) | 
						
							| 177 |  | elsng | ⊢ ( 𝐷  ∈  ℕ  →  ( 𝐷  ∈  { 𝐷 }  ↔  𝐷  =  𝐷 ) ) | 
						
							| 178 | 176 177 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  𝑦  =  𝐷 )  →  ( 𝐷  ∈  { 𝐷 }  ↔  𝐷  =  𝐷 ) ) | 
						
							| 179 | 175 178 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  𝑦  =  𝐷 )  →  𝐷  ∈  { 𝐷 } ) | 
						
							| 180 | 174 179 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  𝑦  =  𝐷 )  →  𝑦  ∈  { 𝐷 } ) | 
						
							| 181 | 180 | olcd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  𝑦  =  𝐷 )  →  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } ) ) | 
						
							| 182 |  | breq1 | ⊢ ( 𝑎  =  𝑦  →  ( 𝑎  ∥  𝐷  ↔  𝑦  ∥  𝐷 ) ) | 
						
							| 183 | 182 | elrab | ⊢ ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 }  ↔  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) ) | 
						
							| 184 | 183 | biimpi | ⊢ ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 }  →  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) ) | 
						
							| 185 | 184 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  →  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) ) | 
						
							| 186 | 185 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  →  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) ) | 
						
							| 187 |  | 1zzd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  1  ∈  ℤ ) | 
						
							| 188 | 156 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝐷  ∈  ℤ ) | 
						
							| 189 | 188 187 | zsubcld | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  ( 𝐷  −  1 )  ∈  ℤ ) | 
						
							| 190 |  | elfzelz | ⊢ ( 𝑦  ∈  ( 1 ... 𝐷 )  →  𝑦  ∈  ℤ ) | 
						
							| 191 | 190 | adantr | ⊢ ( ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 )  →  𝑦  ∈  ℤ ) | 
						
							| 192 | 191 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 193 |  | elfzle1 | ⊢ ( 𝑦  ∈  ( 1 ... 𝐷 )  →  1  ≤  𝑦 ) | 
						
							| 194 | 193 | adantr | ⊢ ( ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 )  →  1  ≤  𝑦 ) | 
						
							| 195 | 194 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  1  ≤  𝑦 ) | 
						
							| 196 |  | elfzle2 | ⊢ ( 𝑦  ∈  ( 1 ... 𝐷 )  →  𝑦  ≤  𝐷 ) | 
						
							| 197 | 196 | adantr | ⊢ ( ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 )  →  𝑦  ≤  𝐷 ) | 
						
							| 198 | 197 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝑦  ≤  𝐷 ) | 
						
							| 199 |  | neqne | ⊢ ( ¬  𝑦  =  𝐷  →  𝑦  ≠  𝐷 ) | 
						
							| 200 | 199 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  →  𝑦  ≠  𝐷 ) | 
						
							| 201 | 200 | necomd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  →  𝐷  ≠  𝑦 ) | 
						
							| 202 | 201 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝐷  ≠  𝑦 ) | 
						
							| 203 | 198 202 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  ( 𝑦  ≤  𝐷  ∧  𝐷  ≠  𝑦 ) ) | 
						
							| 204 | 192 | zred | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 205 | 158 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 206 | 204 205 | ltlend | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  ( 𝑦  <  𝐷  ↔  ( 𝑦  ≤  𝐷  ∧  𝐷  ≠  𝑦 ) ) ) | 
						
							| 207 | 203 206 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝑦  <  𝐷 ) | 
						
							| 208 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝐷  ∈  ℕ ) | 
						
							| 209 | 208 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝐷  ∈  ℤ ) | 
						
							| 210 | 192 209 | zltlem1d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  ( 𝑦  <  𝐷  ↔  𝑦  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 211 | 207 210 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝑦  ≤  ( 𝐷  −  1 ) ) | 
						
							| 212 | 187 189 192 195 211 | elfzd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝑦  ∈  ( 1 ... ( 𝐷  −  1 ) ) ) | 
						
							| 213 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝑦  ∥  𝐷 ) | 
						
							| 214 | 182 212 213 | elrabd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  ∧  ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 ) )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 215 | 214 | ex | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  →  ( ( 𝑦  ∈  ( 1 ... 𝐷 )  ∧  𝑦  ∥  𝐷 )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 216 | 186 215 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 217 | 216 | orcd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  ∧  ¬  𝑦  =  𝐷 )  →  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } ) ) | 
						
							| 218 | 181 217 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  →  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∨  𝑦  ∈  { 𝐷 } ) ) | 
						
							| 219 | 218 125 | sylibr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } )  →  𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ) | 
						
							| 220 | 219 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 }  →  𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ) ) | 
						
							| 221 | 173 220 | impbid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } )  ↔  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 222 | 221 | eqrdv | ⊢ ( 𝜑  →  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } )  =  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 223 | 222 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ϕ ‘ 𝑘 )  =  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 ) ) | 
						
							| 224 |  | phisum | ⊢ ( 𝐷  ∈  ℕ  →  Σ 𝑘  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  =  𝐷 ) | 
						
							| 225 | 6 224 | syl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  =  𝐷 ) | 
						
							| 226 |  | eqcom | ⊢ ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  𝐷  ↔  𝐷  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) | 
						
							| 227 | 226 | imbi2i | ⊢ ( ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝐴 )  =  𝐷 )  ↔  ( 𝜑  →  𝐷  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) ) | 
						
							| 228 | 9 227 | mpbi | ⊢ ( 𝜑  →  𝐷  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) | 
						
							| 229 | 228 | oveq1d | ⊢ ( 𝜑  →  ( 𝐷  ↑  𝑥 )  =  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 ) ) | 
						
							| 230 | 229 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝐷  ↑  𝑥 )  =  ( 0g ‘ 𝐺 )  ↔  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 231 | 230 | rabbidv | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( 𝐷  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) }  =  { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) | 
						
							| 232 | 231 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝐷  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 233 | 1 2 3 4 5 8 | unitscyglem1 | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( ( od ‘ 𝐺 ) ‘ 𝐴 )  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) | 
						
							| 234 | 232 233 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝐷  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } )  =  ( ( od ‘ 𝐺 ) ‘ 𝐴 ) ) | 
						
							| 235 | 234 9 | eqtr2d | ⊢ ( 𝜑  →  𝐷  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝐷  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 236 | 1 2 3 4 6 | grpods | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( 𝐷  ↑  𝑥 )  =  ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 237 | 235 236 | eqtr4d | ⊢ ( 𝜑  →  𝐷  =  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 238 | 222 | eqcomd | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 }  =  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ) | 
						
							| 239 | 238 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 240 | 237 239 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 241 | 225 240 | eqtr2d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  Σ 𝑘  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 ) ) | 
						
							| 242 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  1  ∈  ℤ ) | 
						
							| 243 | 156 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  𝐷  ∈  ℤ ) | 
						
							| 244 | 182 | elrab | ⊢ ( 𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 }  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐷 ) ) | 
						
							| 245 | 244 | biimpi | ⊢ ( 𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 }  →  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐷 ) ) | 
						
							| 246 | 245 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  ( 𝑦  ∈  ℕ  ∧  𝑦  ∥  𝐷 ) ) | 
						
							| 247 | 246 | simpld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  𝑦  ∈  ℕ ) | 
						
							| 248 | 247 | nnzd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  𝑦  ∈  ℤ ) | 
						
							| 249 | 247 | nnge1d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  1  ≤  𝑦 ) | 
						
							| 250 | 246 | simprd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  𝑦  ∥  𝐷 ) | 
						
							| 251 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  𝐷  ∈  ℕ ) | 
						
							| 252 |  | dvdsle | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝐷  ∈  ℕ )  →  ( 𝑦  ∥  𝐷  →  𝑦  ≤  𝐷 ) ) | 
						
							| 253 | 248 251 252 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  ( 𝑦  ∥  𝐷  →  𝑦  ≤  𝐷 ) ) | 
						
							| 254 | 250 253 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  𝑦  ≤  𝐷 ) | 
						
							| 255 | 242 243 248 249 254 | elfzd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  𝑦  ∈  ( 1 ... 𝐷 ) ) | 
						
							| 256 | 182 255 250 | elrabd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } )  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 257 | 256 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 }  →  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 258 |  | elfzelz | ⊢ ( 𝑎  ∈  ( 1 ... 𝐷 )  →  𝑎  ∈  ℤ ) | 
						
							| 259 |  | elfzle1 | ⊢ ( 𝑎  ∈  ( 1 ... 𝐷 )  →  1  ≤  𝑎 ) | 
						
							| 260 | 258 259 | jca | ⊢ ( 𝑎  ∈  ( 1 ... 𝐷 )  →  ( 𝑎  ∈  ℤ  ∧  1  ≤  𝑎 ) ) | 
						
							| 261 | 260 | adantr | ⊢ ( ( 𝑎  ∈  ( 1 ... 𝐷 )  ∧  𝑎  ∥  𝐷 )  →  ( 𝑎  ∈  ℤ  ∧  1  ≤  𝑎 ) ) | 
						
							| 262 | 261 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... 𝐷 )  ∧  𝑎  ∥  𝐷 ) )  →  ( 𝑎  ∈  ℤ  ∧  1  ≤  𝑎 ) ) | 
						
							| 263 |  | elnnz1 | ⊢ ( 𝑎  ∈  ℕ  ↔  ( 𝑎  ∈  ℤ  ∧  1  ≤  𝑎 ) ) | 
						
							| 264 | 262 263 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( 1 ... 𝐷 )  ∧  𝑎  ∥  𝐷 ) )  →  𝑎  ∈  ℕ ) | 
						
							| 265 | 264 | rabss3d | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 }  ⊆  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 266 | 265 | sseld | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 }  →  𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 267 | 257 266 | impbid | ⊢ ( 𝜑  →  ( 𝑦  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 }  ↔  𝑦  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) ) | 
						
							| 268 | 267 | eqrdv | ⊢ ( 𝜑  →  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 }  =  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 269 | 268 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ℕ  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  =  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 ) ) | 
						
							| 270 | 241 269 | eqtr2d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... 𝐷 )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  =  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 271 | 223 270 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ϕ ‘ 𝑘 )  =  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } ) ) | 
						
							| 272 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 273 |  | nfcv | ⊢ Ⅎ 𝑘 ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) | 
						
							| 274 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( 𝐷  −  1 ) )  ∈  Fin ) | 
						
							| 275 |  | ssrab2 | ⊢ { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ⊆  ( 1 ... ( 𝐷  −  1 ) ) | 
						
							| 276 | 275 | a1i | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ⊆  ( 1 ... ( 𝐷  −  1 ) ) ) | 
						
							| 277 | 274 276 | ssfid | ⊢ ( 𝜑  →  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∈  Fin ) | 
						
							| 278 | 154 | elrab | ⊢ ( 𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ↔  ( 𝐷  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝐷  ∥  𝐷 ) ) | 
						
							| 279 | 278 | biimpi | ⊢ ( 𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  →  ( 𝐷  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∧  𝐷  ∥  𝐷 ) ) | 
						
							| 280 | 279 | simpld | ⊢ ( 𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  →  𝐷  ∈  ( 1 ... ( 𝐷  −  1 ) ) ) | 
						
							| 281 | 280 | adantl | ⊢ ( ( 𝜑  ∧  𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝐷  ∈  ( 1 ... ( 𝐷  −  1 ) ) ) | 
						
							| 282 |  | elfzle2 | ⊢ ( 𝐷  ∈  ( 1 ... ( 𝐷  −  1 ) )  →  𝐷  ≤  ( 𝐷  −  1 ) ) | 
						
							| 283 | 281 282 | syl | ⊢ ( ( 𝜑  ∧  𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝐷  ≤  ( 𝐷  −  1 ) ) | 
						
							| 284 | 158 | ltm1d | ⊢ ( 𝜑  →  ( 𝐷  −  1 )  <  𝐷 ) | 
						
							| 285 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 286 | 158 285 | resubcld | ⊢ ( 𝜑  →  ( 𝐷  −  1 )  ∈  ℝ ) | 
						
							| 287 | 286 158 | ltnled | ⊢ ( 𝜑  →  ( ( 𝐷  −  1 )  <  𝐷  ↔  ¬  𝐷  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 288 | 284 287 | mpbid | ⊢ ( 𝜑  →  ¬  𝐷  ≤  ( 𝐷  −  1 ) ) | 
						
							| 289 | 288 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ¬  𝐷  ≤  ( 𝐷  −  1 ) ) | 
						
							| 290 | 283 289 | pm2.21dd | ⊢ ( ( 𝜑  ∧  𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ¬  𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 291 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ¬  𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 292 | 290 291 | pm2.61dan | ⊢ ( 𝜑  →  ¬  𝐷  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ) | 
						
							| 293 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  𝐵  ∈  Fin ) | 
						
							| 294 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ⊆  𝐵 | 
						
							| 295 | 294 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ⊆  𝐵 ) | 
						
							| 296 | 293 295 | ssfid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∈  Fin ) | 
						
							| 297 |  | hashcl | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  ∈  Fin  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℕ0 ) | 
						
							| 298 | 296 297 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℕ0 ) | 
						
							| 299 | 298 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  ∈  ℂ ) | 
						
							| 300 |  | eqeq2 | ⊢ ( 𝑘  =  𝐷  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 ) ) | 
						
							| 301 | 300 | rabbidv | ⊢ ( 𝑘  =  𝐷  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 }  =  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) | 
						
							| 302 | 301 | fveq2d | ⊢ ( 𝑘  =  𝐷  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) ) | 
						
							| 303 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ⊆  𝐵 | 
						
							| 304 | 303 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ⊆  𝐵 ) | 
						
							| 305 | 4 304 | ssfid | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ∈  Fin ) | 
						
							| 306 |  | hashcl | ⊢ ( { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 }  ∈  Fin  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  ∈  ℕ0 ) | 
						
							| 307 | 305 306 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  ∈  ℕ0 ) | 
						
							| 308 | 307 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  ∈  ℂ ) | 
						
							| 309 | 272 273 277 6 292 299 302 308 | fsumsplitsn | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  =  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  +  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) ) ) | 
						
							| 310 | 271 309 | eqtr2d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  +  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) )  =  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ϕ ‘ 𝑘 ) ) | 
						
							| 311 |  | nfcv | ⊢ Ⅎ 𝑘 ( ϕ ‘ 𝐷 ) | 
						
							| 312 | 121 299 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } )  →  ( ϕ ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 313 |  | fveq2 | ⊢ ( 𝑘  =  𝐷  →  ( ϕ ‘ 𝑘 )  =  ( ϕ ‘ 𝐷 ) ) | 
						
							| 314 | 6 | phicld | ⊢ ( 𝜑  →  ( ϕ ‘ 𝐷 )  ∈  ℕ ) | 
						
							| 315 | 314 | nncnd | ⊢ ( 𝜑  →  ( ϕ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 316 | 272 311 277 6 292 312 313 315 | fsumsplitsn | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 }  ∪  { 𝐷 } ) ( ϕ ‘ 𝑘 )  =  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  +  ( ϕ ‘ 𝐷 ) ) ) | 
						
							| 317 | 310 316 | eqtrd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝑘 } )  +  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) )  =  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  +  ( ϕ ‘ 𝐷 ) ) ) | 
						
							| 318 | 124 317 | eqtrd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  +  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) )  =  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  +  ( ϕ ‘ 𝐷 ) ) ) | 
						
							| 319 | 277 312 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 320 | 319 308 315 | addcand | ⊢ ( 𝜑  →  ( ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  +  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } ) )  =  ( Σ 𝑘  ∈  { 𝑎  ∈  ( 1 ... ( 𝐷  −  1 ) )  ∣  𝑎  ∥  𝐷 } ( ϕ ‘ 𝑘 )  +  ( ϕ ‘ 𝐷 ) )  ↔  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) ) | 
						
							| 321 | 318 320 | mpbid | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝐵  ∣  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  𝐷 } )  =  ( ϕ ‘ 𝐷 ) ) |