| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem1.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | unitscyglem1.2 |  |-  .^ = ( .g ` G ) | 
						
							| 3 |  | unitscyglem1.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | unitscyglem1.4 |  |-  ( ph -> B e. Fin ) | 
						
							| 5 |  | unitscyglem1.5 |  |-  ( ph -> A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n ) | 
						
							| 6 |  | breq1 |  |-  ( d = c -> ( d || ( # ` B ) <-> c || ( # ` B ) ) ) | 
						
							| 7 |  | eqeq2 |  |-  ( d = c -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` x ) = c ) ) | 
						
							| 8 | 7 | rabbidv |  |-  ( d = c -> { x e. B | ( ( od ` G ) ` x ) = d } = { x e. B | ( ( od ` G ) ` x ) = c } ) | 
						
							| 9 | 8 | neeq1d |  |-  ( d = c -> ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) | 
						
							| 10 | 6 9 | anbi12d |  |-  ( d = c -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) <-> ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) ) | 
						
							| 11 | 8 | fveq2d |  |-  ( d = c -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) ) | 
						
							| 12 |  | fveq2 |  |-  ( d = c -> ( phi ` d ) = ( phi ` c ) ) | 
						
							| 13 | 11 12 | eqeq12d |  |-  ( d = c -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) | 
						
							| 14 | 10 13 | imbi12d |  |-  ( d = c -> ( ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) <-> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 15 | 14 | imbi2d |  |-  ( d = c -> ( ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) <-> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) | 
						
							| 16 |  | simplr |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ph ) | 
						
							| 17 |  | simplll |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> d e. NN ) | 
						
							| 18 | 16 17 | jca |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ph /\ d e. NN ) ) | 
						
							| 19 |  | breq1 |  |-  ( c = e -> ( c < d <-> e < d ) ) | 
						
							| 20 |  | breq1 |  |-  ( c = e -> ( c || ( # ` B ) <-> e || ( # ` B ) ) ) | 
						
							| 21 |  | eqeq2 |  |-  ( c = e -> ( ( ( od ` G ) ` x ) = c <-> ( ( od ` G ) ` x ) = e ) ) | 
						
							| 22 | 21 | rabbidv |  |-  ( c = e -> { x e. B | ( ( od ` G ) ` x ) = c } = { x e. B | ( ( od ` G ) ` x ) = e } ) | 
						
							| 23 | 22 | neeq1d |  |-  ( c = e -> ( { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) ) | 
						
							| 24 | 20 23 | anbi12d |  |-  ( c = e -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) <-> ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) ) ) | 
						
							| 25 | 22 | fveq2d |  |-  ( c = e -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) ) | 
						
							| 26 |  | fveq2 |  |-  ( c = e -> ( phi ` c ) = ( phi ` e ) ) | 
						
							| 27 | 25 26 | eqeq12d |  |-  ( c = e -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) | 
						
							| 28 | 24 27 | imbi12d |  |-  ( c = e -> ( ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) <-> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) | 
						
							| 29 | 28 | imbi2d |  |-  ( c = e -> ( ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) <-> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) | 
						
							| 30 | 19 29 | imbi12d |  |-  ( c = e -> ( ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) <-> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) ) | 
						
							| 31 |  | simpr |  |-  ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) | 
						
							| 35 |  | simpr |  |-  ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> e e. NN ) | 
						
							| 36 | 30 34 35 | rspcdva |  |-  ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) | 
						
							| 37 |  | simp-5r |  |-  ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ph ) | 
						
							| 38 |  | simpr |  |-  ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> e < d ) | 
						
							| 39 |  | simplr |  |-  ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) | 
						
							| 40 | 38 39 | mpd |  |-  ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) | 
						
							| 41 | 37 40 | mpd |  |-  ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) | 
						
							| 42 | 41 | ex |  |-  ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) | 
						
							| 43 | 42 | ex |  |-  ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) | 
						
							| 44 | 36 43 | mpd |  |-  ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) | 
						
							| 45 | 44 | ralrimiva |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) | 
						
							| 46 |  | nfv |  |-  F/ c ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) | 
						
							| 47 |  | nfv |  |-  F/ e ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) | 
						
							| 48 |  | breq1 |  |-  ( e = c -> ( e < d <-> c < d ) ) | 
						
							| 49 |  | breq1 |  |-  ( e = c -> ( e || ( # ` B ) <-> c || ( # ` B ) ) ) | 
						
							| 50 |  | eqeq2 |  |-  ( e = c -> ( ( ( od ` G ) ` x ) = e <-> ( ( od ` G ) ` x ) = c ) ) | 
						
							| 51 | 50 | rabbidv |  |-  ( e = c -> { x e. B | ( ( od ` G ) ` x ) = e } = { x e. B | ( ( od ` G ) ` x ) = c } ) | 
						
							| 52 | 51 | neeq1d |  |-  ( e = c -> ( { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) | 
						
							| 53 | 49 52 | anbi12d |  |-  ( e = c -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) <-> ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) ) | 
						
							| 54 | 51 | fveq2d |  |-  ( e = c -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) ) | 
						
							| 55 |  | fveq2 |  |-  ( e = c -> ( phi ` e ) = ( phi ` c ) ) | 
						
							| 56 | 54 55 | eqeq12d |  |-  ( e = c -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) | 
						
							| 57 | 53 56 | imbi12d |  |-  ( e = c -> ( ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) <-> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 58 | 48 57 | imbi12d |  |-  ( e = c -> ( ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) <-> ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) | 
						
							| 59 | 46 47 58 | cbvralw |  |-  ( A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) <-> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 60 | 59 | biimpi |  |-  ( A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 61 | 45 60 | syl |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 62 | 18 61 | jca |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) | 
						
							| 63 |  | simprl |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> d || ( # ` B ) ) | 
						
							| 64 | 62 63 | jca |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) ) | 
						
							| 65 |  | simprr |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) | 
						
							| 66 | 64 65 | jca |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) | 
						
							| 67 |  | rabn0 |  |-  ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) <-> E. x e. B ( ( od ` G ) ` x ) = d ) | 
						
							| 68 | 67 | biimpi |  |-  ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) -> E. x e. B ( ( od ` G ) ` x ) = d ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> E. x e. B ( ( od ` G ) ` x ) = d ) | 
						
							| 70 |  | simp-4l |  |-  ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) | 
						
							| 71 |  | simp-4r |  |-  ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d || ( # ` B ) ) | 
						
							| 72 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> a e. B ) | 
						
							| 73 | 70 71 72 | jca31 |  |-  ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) ) | 
						
							| 74 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( od ` G ) ` a ) = d ) | 
						
							| 75 | 73 74 | jca |  |-  ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) ) | 
						
							| 76 |  | nfcv |  |-  F/_ x B | 
						
							| 77 |  | nfcv |  |-  F/_ z B | 
						
							| 78 |  | nfv |  |-  F/ z ( ( od ` G ) ` x ) = d | 
						
							| 79 |  | nfv |  |-  F/ x ( ( od ` G ) ` z ) = d | 
						
							| 80 |  | fveqeq2 |  |-  ( x = z -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` z ) = d ) ) | 
						
							| 81 | 76 77 78 79 80 | cbvrabw |  |-  { x e. B | ( ( od ` G ) ` x ) = d } = { z e. B | ( ( od ` G ) ` z ) = d } | 
						
							| 82 | 81 | a1i |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> { x e. B | ( ( od ` G ) ` x ) = d } = { z e. B | ( ( od ` G ) ` z ) = d } ) | 
						
							| 83 | 82 | fveq2d |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( # ` { z e. B | ( ( od ` G ) ` z ) = d } ) ) | 
						
							| 84 | 3 | ad5antr |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> G e. Grp ) | 
						
							| 85 | 4 | ad5antr |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> B e. Fin ) | 
						
							| 86 |  | nfv |  |-  F/ z ( n .^ x ) = ( 0g ` G ) | 
						
							| 87 |  | nfv |  |-  F/ x ( n .^ z ) = ( 0g ` G ) | 
						
							| 88 |  | oveq2 |  |-  ( x = z -> ( n .^ x ) = ( n .^ z ) ) | 
						
							| 89 | 88 | eqeq1d |  |-  ( x = z -> ( ( n .^ x ) = ( 0g ` G ) <-> ( n .^ z ) = ( 0g ` G ) ) ) | 
						
							| 90 | 76 77 86 87 89 | cbvrabw |  |-  { x e. B | ( n .^ x ) = ( 0g ` G ) } = { z e. B | ( n .^ z ) = ( 0g ` G ) } | 
						
							| 91 | 90 | a1i |  |-  ( ph -> { x e. B | ( n .^ x ) = ( 0g ` G ) } = { z e. B | ( n .^ z ) = ( 0g ` G ) } ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ph -> ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) = ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) ) | 
						
							| 93 | 92 | breq1d |  |-  ( ph -> ( ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n <-> ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) | 
						
							| 94 | 93 | ralbidv |  |-  ( ph -> ( A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n <-> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) | 
						
							| 95 | 94 | biimpd |  |-  ( ph -> ( A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) | 
						
							| 96 | 5 95 | mpd |  |-  ( ph -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) | 
						
							| 97 | 96 | ad5antr |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) | 
						
							| 98 |  | simp-5r |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d e. NN ) | 
						
							| 99 |  | simpllr |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d || ( # ` B ) ) | 
						
							| 100 |  | simplr |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> a e. B ) | 
						
							| 101 |  | simpr |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( od ` G ) ` a ) = d ) | 
						
							| 102 |  | nfv |  |-  F/ x ( ( od ` G ) ` z ) = c | 
						
							| 103 |  | nfv |  |-  F/ z ( ( od ` G ) ` x ) = c | 
						
							| 104 |  | fveqeq2 |  |-  ( z = x -> ( ( ( od ` G ) ` z ) = c <-> ( ( od ` G ) ` x ) = c ) ) | 
						
							| 105 | 77 76 102 103 104 | cbvrabw |  |-  { z e. B | ( ( od ` G ) ` z ) = c } = { x e. B | ( ( od ` G ) ` x ) = c } | 
						
							| 106 |  | eqcom |  |-  ( { z e. B | ( ( od ` G ) ` z ) = c } = { x e. B | ( ( od ` G ) ` x ) = c } <-> { x e. B | ( ( od ` G ) ` x ) = c } = { z e. B | ( ( od ` G ) ` z ) = c } ) | 
						
							| 107 | 105 106 | mpbi |  |-  { x e. B | ( ( od ` G ) ` x ) = c } = { z e. B | ( ( od ` G ) ` z ) = c } | 
						
							| 108 | 107 | neeq1i |  |-  ( { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) <-> { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) | 
						
							| 109 | 108 | anbi2i |  |-  ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) <-> ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) ) | 
						
							| 110 | 107 | fveq2i |  |-  ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) | 
						
							| 111 | 110 | eqeq1i |  |-  ( ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) <-> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) | 
						
							| 112 | 109 111 | imbi12i |  |-  ( ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) <-> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) | 
						
							| 113 | 112 | imbi2i |  |-  ( ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) <-> ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 114 | 113 | biimpi |  |-  ( ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) -> ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 115 | 114 | ralimi |  |-  ( A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 116 | 115 | adantl |  |-  ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) | 
						
							| 120 | 1 2 84 85 97 98 99 100 101 119 | unitscyglem2 |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = d } ) = ( phi ` d ) ) | 
						
							| 121 | 83 120 | eqtrd |  |-  ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) | 
						
							| 122 | 75 121 | syl |  |-  ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) | 
						
							| 123 |  | nfv |  |-  F/ a ( ( od ` G ) ` x ) = d | 
						
							| 124 |  | nfv |  |-  F/ x ( ( od ` G ) ` a ) = d | 
						
							| 125 |  | fveqeq2 |  |-  ( x = a -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` a ) = d ) ) | 
						
							| 126 | 123 124 125 | cbvrexw |  |-  ( E. x e. B ( ( od ` G ) ` x ) = d <-> E. a e. B ( ( od ` G ) ` a ) = d ) | 
						
							| 127 | 126 | biimpi |  |-  ( E. x e. B ( ( od ` G ) ` x ) = d -> E. a e. B ( ( od ` G ) ` a ) = d ) | 
						
							| 128 | 127 | adantl |  |-  ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) -> E. a e. B ( ( od ` G ) ` a ) = d ) | 
						
							| 129 | 122 128 | r19.29a |  |-  ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) | 
						
							| 130 | 129 | ex |  |-  ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) -> ( E. x e. B ( ( od ` G ) ` x ) = d -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( E. x e. B ( ( od ` G ) ` x ) = d -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) | 
						
							| 132 | 69 131 | mpd |  |-  ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) | 
						
							| 133 | 66 132 | syl |  |-  ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) | 
						
							| 134 | 133 | ex |  |-  ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) | 
						
							| 135 | 134 | ex |  |-  ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) | 
						
							| 136 | 135 | ex |  |-  ( d e. NN -> ( A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) ) | 
						
							| 137 | 15 136 | indstr |  |-  ( d e. NN -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) | 
						
							| 138 | 137 | com12 |  |-  ( ph -> ( d e. NN -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) | 
						
							| 139 | 138 | imp |  |-  ( ( ph /\ d e. NN ) -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) | 
						
							| 140 | 139 | ralrimiva |  |-  ( ph -> A. d e. NN ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |