| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitscyglem1.1 |
|- B = ( Base ` G ) |
| 2 |
|
unitscyglem1.2 |
|- .^ = ( .g ` G ) |
| 3 |
|
unitscyglem1.3 |
|- ( ph -> G e. Grp ) |
| 4 |
|
unitscyglem1.4 |
|- ( ph -> B e. Fin ) |
| 5 |
|
unitscyglem1.5 |
|- ( ph -> A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n ) |
| 6 |
|
breq1 |
|- ( d = c -> ( d || ( # ` B ) <-> c || ( # ` B ) ) ) |
| 7 |
|
eqeq2 |
|- ( d = c -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` x ) = c ) ) |
| 8 |
7
|
rabbidv |
|- ( d = c -> { x e. B | ( ( od ` G ) ` x ) = d } = { x e. B | ( ( od ` G ) ` x ) = c } ) |
| 9 |
8
|
neeq1d |
|- ( d = c -> ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) |
| 10 |
6 9
|
anbi12d |
|- ( d = c -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) <-> ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) ) |
| 11 |
8
|
fveq2d |
|- ( d = c -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) ) |
| 12 |
|
fveq2 |
|- ( d = c -> ( phi ` d ) = ( phi ` c ) ) |
| 13 |
11 12
|
eqeq12d |
|- ( d = c -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) |
| 14 |
10 13
|
imbi12d |
|- ( d = c -> ( ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) <-> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
| 15 |
14
|
imbi2d |
|- ( d = c -> ( ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) <-> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
| 16 |
|
simplr |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ph ) |
| 17 |
|
simplll |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> d e. NN ) |
| 18 |
16 17
|
jca |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ph /\ d e. NN ) ) |
| 19 |
|
breq1 |
|- ( c = e -> ( c < d <-> e < d ) ) |
| 20 |
|
breq1 |
|- ( c = e -> ( c || ( # ` B ) <-> e || ( # ` B ) ) ) |
| 21 |
|
eqeq2 |
|- ( c = e -> ( ( ( od ` G ) ` x ) = c <-> ( ( od ` G ) ` x ) = e ) ) |
| 22 |
21
|
rabbidv |
|- ( c = e -> { x e. B | ( ( od ` G ) ` x ) = c } = { x e. B | ( ( od ` G ) ` x ) = e } ) |
| 23 |
22
|
neeq1d |
|- ( c = e -> ( { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) ) |
| 24 |
20 23
|
anbi12d |
|- ( c = e -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) <-> ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) ) ) |
| 25 |
22
|
fveq2d |
|- ( c = e -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) ) |
| 26 |
|
fveq2 |
|- ( c = e -> ( phi ` c ) = ( phi ` e ) ) |
| 27 |
25 26
|
eqeq12d |
|- ( c = e -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) |
| 28 |
24 27
|
imbi12d |
|- ( c = e -> ( ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) <-> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
| 29 |
28
|
imbi2d |
|- ( c = e -> ( ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) <-> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) |
| 30 |
19 29
|
imbi12d |
|- ( c = e -> ( ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) <-> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) ) |
| 31 |
|
simpr |
|- ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
| 32 |
31
|
adantr |
|- ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
| 33 |
32
|
adantr |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
| 35 |
|
simpr |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> e e. NN ) |
| 36 |
30 34 35
|
rspcdva |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) |
| 37 |
|
simp-5r |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ph ) |
| 38 |
|
simpr |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> e < d ) |
| 39 |
|
simplr |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) |
| 40 |
38 39
|
mpd |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
| 41 |
37 40
|
mpd |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) |
| 42 |
41
|
ex |
|- ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
| 43 |
42
|
ex |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) |
| 44 |
36 43
|
mpd |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
| 45 |
44
|
ralrimiva |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
| 46 |
|
nfv |
|- F/ c ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) |
| 47 |
|
nfv |
|- F/ e ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) |
| 48 |
|
breq1 |
|- ( e = c -> ( e < d <-> c < d ) ) |
| 49 |
|
breq1 |
|- ( e = c -> ( e || ( # ` B ) <-> c || ( # ` B ) ) ) |
| 50 |
|
eqeq2 |
|- ( e = c -> ( ( ( od ` G ) ` x ) = e <-> ( ( od ` G ) ` x ) = c ) ) |
| 51 |
50
|
rabbidv |
|- ( e = c -> { x e. B | ( ( od ` G ) ` x ) = e } = { x e. B | ( ( od ` G ) ` x ) = c } ) |
| 52 |
51
|
neeq1d |
|- ( e = c -> ( { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) |
| 53 |
49 52
|
anbi12d |
|- ( e = c -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) <-> ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) ) |
| 54 |
51
|
fveq2d |
|- ( e = c -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) ) |
| 55 |
|
fveq2 |
|- ( e = c -> ( phi ` e ) = ( phi ` c ) ) |
| 56 |
54 55
|
eqeq12d |
|- ( e = c -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) |
| 57 |
53 56
|
imbi12d |
|- ( e = c -> ( ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) <-> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
| 58 |
48 57
|
imbi12d |
|- ( e = c -> ( ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) <-> ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
| 59 |
46 47 58
|
cbvralw |
|- ( A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) <-> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
| 60 |
59
|
biimpi |
|- ( A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
| 61 |
45 60
|
syl |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
| 62 |
18 61
|
jca |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
| 63 |
|
simprl |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> d || ( # ` B ) ) |
| 64 |
62 63
|
jca |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) ) |
| 65 |
|
simprr |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) |
| 66 |
64 65
|
jca |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) |
| 67 |
|
rabn0 |
|- ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) <-> E. x e. B ( ( od ` G ) ` x ) = d ) |
| 68 |
67
|
biimpi |
|- ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) -> E. x e. B ( ( od ` G ) ` x ) = d ) |
| 69 |
68
|
adantl |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> E. x e. B ( ( od ` G ) ` x ) = d ) |
| 70 |
|
simp-4l |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
| 71 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d || ( # ` B ) ) |
| 72 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> a e. B ) |
| 73 |
70 71 72
|
jca31 |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) ) |
| 74 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( od ` G ) ` a ) = d ) |
| 75 |
73 74
|
jca |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) ) |
| 76 |
|
nfcv |
|- F/_ x B |
| 77 |
|
nfcv |
|- F/_ z B |
| 78 |
|
nfv |
|- F/ z ( ( od ` G ) ` x ) = d |
| 79 |
|
nfv |
|- F/ x ( ( od ` G ) ` z ) = d |
| 80 |
|
fveqeq2 |
|- ( x = z -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` z ) = d ) ) |
| 81 |
76 77 78 79 80
|
cbvrabw |
|- { x e. B | ( ( od ` G ) ` x ) = d } = { z e. B | ( ( od ` G ) ` z ) = d } |
| 82 |
81
|
a1i |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> { x e. B | ( ( od ` G ) ` x ) = d } = { z e. B | ( ( od ` G ) ` z ) = d } ) |
| 83 |
82
|
fveq2d |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( # ` { z e. B | ( ( od ` G ) ` z ) = d } ) ) |
| 84 |
3
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> G e. Grp ) |
| 85 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> B e. Fin ) |
| 86 |
|
nfv |
|- F/ z ( n .^ x ) = ( 0g ` G ) |
| 87 |
|
nfv |
|- F/ x ( n .^ z ) = ( 0g ` G ) |
| 88 |
|
oveq2 |
|- ( x = z -> ( n .^ x ) = ( n .^ z ) ) |
| 89 |
88
|
eqeq1d |
|- ( x = z -> ( ( n .^ x ) = ( 0g ` G ) <-> ( n .^ z ) = ( 0g ` G ) ) ) |
| 90 |
76 77 86 87 89
|
cbvrabw |
|- { x e. B | ( n .^ x ) = ( 0g ` G ) } = { z e. B | ( n .^ z ) = ( 0g ` G ) } |
| 91 |
90
|
a1i |
|- ( ph -> { x e. B | ( n .^ x ) = ( 0g ` G ) } = { z e. B | ( n .^ z ) = ( 0g ` G ) } ) |
| 92 |
91
|
fveq2d |
|- ( ph -> ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) = ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) ) |
| 93 |
92
|
breq1d |
|- ( ph -> ( ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n <-> ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) |
| 94 |
93
|
ralbidv |
|- ( ph -> ( A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n <-> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) |
| 95 |
94
|
biimpd |
|- ( ph -> ( A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) |
| 96 |
5 95
|
mpd |
|- ( ph -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) |
| 97 |
96
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) |
| 98 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d e. NN ) |
| 99 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d || ( # ` B ) ) |
| 100 |
|
simplr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> a e. B ) |
| 101 |
|
simpr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( od ` G ) ` a ) = d ) |
| 102 |
|
nfv |
|- F/ x ( ( od ` G ) ` z ) = c |
| 103 |
|
nfv |
|- F/ z ( ( od ` G ) ` x ) = c |
| 104 |
|
fveqeq2 |
|- ( z = x -> ( ( ( od ` G ) ` z ) = c <-> ( ( od ` G ) ` x ) = c ) ) |
| 105 |
77 76 102 103 104
|
cbvrabw |
|- { z e. B | ( ( od ` G ) ` z ) = c } = { x e. B | ( ( od ` G ) ` x ) = c } |
| 106 |
|
eqcom |
|- ( { z e. B | ( ( od ` G ) ` z ) = c } = { x e. B | ( ( od ` G ) ` x ) = c } <-> { x e. B | ( ( od ` G ) ` x ) = c } = { z e. B | ( ( od ` G ) ` z ) = c } ) |
| 107 |
105 106
|
mpbi |
|- { x e. B | ( ( od ` G ) ` x ) = c } = { z e. B | ( ( od ` G ) ` z ) = c } |
| 108 |
107
|
neeq1i |
|- ( { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) <-> { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) |
| 109 |
108
|
anbi2i |
|- ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) <-> ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) ) |
| 110 |
107
|
fveq2i |
|- ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) |
| 111 |
110
|
eqeq1i |
|- ( ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) <-> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) |
| 112 |
109 111
|
imbi12i |
|- ( ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) <-> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) |
| 113 |
112
|
imbi2i |
|- ( ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) <-> ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
| 114 |
113
|
biimpi |
|- ( ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) -> ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
| 115 |
114
|
ralimi |
|- ( A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
| 116 |
115
|
adantl |
|- ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
| 117 |
116
|
adantr |
|- ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
| 119 |
118
|
adantr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
| 120 |
1 2 84 85 97 98 99 100 101 119
|
unitscyglem2 |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = d } ) = ( phi ` d ) ) |
| 121 |
83 120
|
eqtrd |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
| 122 |
75 121
|
syl |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
| 123 |
|
nfv |
|- F/ a ( ( od ` G ) ` x ) = d |
| 124 |
|
nfv |
|- F/ x ( ( od ` G ) ` a ) = d |
| 125 |
|
fveqeq2 |
|- ( x = a -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` a ) = d ) ) |
| 126 |
123 124 125
|
cbvrexw |
|- ( E. x e. B ( ( od ` G ) ` x ) = d <-> E. a e. B ( ( od ` G ) ` a ) = d ) |
| 127 |
126
|
biimpi |
|- ( E. x e. B ( ( od ` G ) ` x ) = d -> E. a e. B ( ( od ` G ) ` a ) = d ) |
| 128 |
127
|
adantl |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) -> E. a e. B ( ( od ` G ) ` a ) = d ) |
| 129 |
122 128
|
r19.29a |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
| 130 |
129
|
ex |
|- ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) -> ( E. x e. B ( ( od ` G ) ` x ) = d -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |
| 131 |
130
|
adantr |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( E. x e. B ( ( od ` G ) ` x ) = d -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |
| 132 |
69 131
|
mpd |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
| 133 |
66 132
|
syl |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
| 134 |
133
|
ex |
|- ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |
| 135 |
134
|
ex |
|- ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) |
| 136 |
135
|
ex |
|- ( d e. NN -> ( A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) ) |
| 137 |
15 136
|
indstr |
|- ( d e. NN -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) |
| 138 |
137
|
com12 |
|- ( ph -> ( d e. NN -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) |
| 139 |
138
|
imp |
|- ( ( ph /\ d e. NN ) -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |
| 140 |
139
|
ralrimiva |
|- ( ph -> A. d e. NN ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |