Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem1.1 |
|- B = ( Base ` G ) |
2 |
|
unitscyglem1.2 |
|- .^ = ( .g ` G ) |
3 |
|
unitscyglem1.3 |
|- ( ph -> G e. Grp ) |
4 |
|
unitscyglem1.4 |
|- ( ph -> B e. Fin ) |
5 |
|
unitscyglem1.5 |
|- ( ph -> A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n ) |
6 |
|
breq1 |
|- ( d = c -> ( d || ( # ` B ) <-> c || ( # ` B ) ) ) |
7 |
|
eqeq2 |
|- ( d = c -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` x ) = c ) ) |
8 |
7
|
rabbidv |
|- ( d = c -> { x e. B | ( ( od ` G ) ` x ) = d } = { x e. B | ( ( od ` G ) ` x ) = c } ) |
9 |
8
|
neeq1d |
|- ( d = c -> ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) |
10 |
6 9
|
anbi12d |
|- ( d = c -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) <-> ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) ) |
11 |
8
|
fveq2d |
|- ( d = c -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) ) |
12 |
|
fveq2 |
|- ( d = c -> ( phi ` d ) = ( phi ` c ) ) |
13 |
11 12
|
eqeq12d |
|- ( d = c -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) |
14 |
10 13
|
imbi12d |
|- ( d = c -> ( ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) <-> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
15 |
14
|
imbi2d |
|- ( d = c -> ( ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) <-> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
16 |
|
simplr |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ph ) |
17 |
|
simplll |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> d e. NN ) |
18 |
16 17
|
jca |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ph /\ d e. NN ) ) |
19 |
|
breq1 |
|- ( c = e -> ( c < d <-> e < d ) ) |
20 |
|
breq1 |
|- ( c = e -> ( c || ( # ` B ) <-> e || ( # ` B ) ) ) |
21 |
|
eqeq2 |
|- ( c = e -> ( ( ( od ` G ) ` x ) = c <-> ( ( od ` G ) ` x ) = e ) ) |
22 |
21
|
rabbidv |
|- ( c = e -> { x e. B | ( ( od ` G ) ` x ) = c } = { x e. B | ( ( od ` G ) ` x ) = e } ) |
23 |
22
|
neeq1d |
|- ( c = e -> ( { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) ) |
24 |
20 23
|
anbi12d |
|- ( c = e -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) <-> ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) ) ) |
25 |
22
|
fveq2d |
|- ( c = e -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) ) |
26 |
|
fveq2 |
|- ( c = e -> ( phi ` c ) = ( phi ` e ) ) |
27 |
25 26
|
eqeq12d |
|- ( c = e -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) |
28 |
24 27
|
imbi12d |
|- ( c = e -> ( ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) <-> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
29 |
28
|
imbi2d |
|- ( c = e -> ( ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) <-> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) |
30 |
19 29
|
imbi12d |
|- ( c = e -> ( ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) <-> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) ) |
31 |
|
simpr |
|- ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
32 |
31
|
adantr |
|- ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
33 |
32
|
adantr |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
34 |
33
|
adantr |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
35 |
|
simpr |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> e e. NN ) |
36 |
30 34 35
|
rspcdva |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) |
37 |
|
simp-5r |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ph ) |
38 |
|
simpr |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> e < d ) |
39 |
|
simplr |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) |
40 |
38 39
|
mpd |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
41 |
37 40
|
mpd |
|- ( ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) /\ e < d ) -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) |
42 |
41
|
ex |
|- ( ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) /\ ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
43 |
42
|
ex |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( ( e < d -> ( ph -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) ) |
44 |
36 43
|
mpd |
|- ( ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) /\ e e. NN ) -> ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
45 |
44
|
ralrimiva |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) ) |
46 |
|
nfv |
|- F/ c ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) |
47 |
|
nfv |
|- F/ e ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) |
48 |
|
breq1 |
|- ( e = c -> ( e < d <-> c < d ) ) |
49 |
|
breq1 |
|- ( e = c -> ( e || ( # ` B ) <-> c || ( # ` B ) ) ) |
50 |
|
eqeq2 |
|- ( e = c -> ( ( ( od ` G ) ` x ) = e <-> ( ( od ` G ) ` x ) = c ) ) |
51 |
50
|
rabbidv |
|- ( e = c -> { x e. B | ( ( od ` G ) ` x ) = e } = { x e. B | ( ( od ` G ) ` x ) = c } ) |
52 |
51
|
neeq1d |
|- ( e = c -> ( { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) |
53 |
49 52
|
anbi12d |
|- ( e = c -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) <-> ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) ) ) |
54 |
51
|
fveq2d |
|- ( e = c -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) ) |
55 |
|
fveq2 |
|- ( e = c -> ( phi ` e ) = ( phi ` c ) ) |
56 |
54 55
|
eqeq12d |
|- ( e = c -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) |
57 |
53 56
|
imbi12d |
|- ( e = c -> ( ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) <-> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
58 |
48 57
|
imbi12d |
|- ( e = c -> ( ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) <-> ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
59 |
46 47 58
|
cbvralw |
|- ( A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) <-> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
60 |
59
|
biimpi |
|- ( A. e e. NN ( e < d -> ( ( e || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = e } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = e } ) = ( phi ` e ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
61 |
45 60
|
syl |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) |
62 |
18 61
|
jca |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
63 |
|
simprl |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> d || ( # ` B ) ) |
64 |
62 63
|
jca |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) ) |
65 |
|
simprr |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) |
66 |
64 65
|
jca |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) |
67 |
|
rabn0 |
|- ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) <-> E. x e. B ( ( od ` G ) ` x ) = d ) |
68 |
67
|
biimpi |
|- ( { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) -> E. x e. B ( ( od ` G ) ` x ) = d ) |
69 |
68
|
adantl |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> E. x e. B ( ( od ` G ) ` x ) = d ) |
70 |
|
simp-4l |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) |
71 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d || ( # ` B ) ) |
72 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> a e. B ) |
73 |
70 71 72
|
jca31 |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) ) |
74 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( od ` G ) ` a ) = d ) |
75 |
73 74
|
jca |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) ) |
76 |
|
nfcv |
|- F/_ x B |
77 |
|
nfcv |
|- F/_ z B |
78 |
|
nfv |
|- F/ z ( ( od ` G ) ` x ) = d |
79 |
|
nfv |
|- F/ x ( ( od ` G ) ` z ) = d |
80 |
|
fveqeq2 |
|- ( x = z -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` z ) = d ) ) |
81 |
76 77 78 79 80
|
cbvrabw |
|- { x e. B | ( ( od ` G ) ` x ) = d } = { z e. B | ( ( od ` G ) ` z ) = d } |
82 |
81
|
a1i |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> { x e. B | ( ( od ` G ) ` x ) = d } = { z e. B | ( ( od ` G ) ` z ) = d } ) |
83 |
82
|
fveq2d |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( # ` { z e. B | ( ( od ` G ) ` z ) = d } ) ) |
84 |
3
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> G e. Grp ) |
85 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> B e. Fin ) |
86 |
|
nfv |
|- F/ z ( n .^ x ) = ( 0g ` G ) |
87 |
|
nfv |
|- F/ x ( n .^ z ) = ( 0g ` G ) |
88 |
|
oveq2 |
|- ( x = z -> ( n .^ x ) = ( n .^ z ) ) |
89 |
88
|
eqeq1d |
|- ( x = z -> ( ( n .^ x ) = ( 0g ` G ) <-> ( n .^ z ) = ( 0g ` G ) ) ) |
90 |
76 77 86 87 89
|
cbvrabw |
|- { x e. B | ( n .^ x ) = ( 0g ` G ) } = { z e. B | ( n .^ z ) = ( 0g ` G ) } |
91 |
90
|
a1i |
|- ( ph -> { x e. B | ( n .^ x ) = ( 0g ` G ) } = { z e. B | ( n .^ z ) = ( 0g ` G ) } ) |
92 |
91
|
fveq2d |
|- ( ph -> ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) = ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) ) |
93 |
92
|
breq1d |
|- ( ph -> ( ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n <-> ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) |
94 |
93
|
ralbidv |
|- ( ph -> ( A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n <-> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) |
95 |
94
|
biimpd |
|- ( ph -> ( A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) ) |
96 |
5 95
|
mpd |
|- ( ph -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) |
97 |
96
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> A. n e. NN ( # ` { z e. B | ( n .^ z ) = ( 0g ` G ) } ) <_ n ) |
98 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d e. NN ) |
99 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> d || ( # ` B ) ) |
100 |
|
simplr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> a e. B ) |
101 |
|
simpr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( ( od ` G ) ` a ) = d ) |
102 |
|
nfv |
|- F/ x ( ( od ` G ) ` z ) = c |
103 |
|
nfv |
|- F/ z ( ( od ` G ) ` x ) = c |
104 |
|
fveqeq2 |
|- ( z = x -> ( ( ( od ` G ) ` z ) = c <-> ( ( od ` G ) ` x ) = c ) ) |
105 |
77 76 102 103 104
|
cbvrabw |
|- { z e. B | ( ( od ` G ) ` z ) = c } = { x e. B | ( ( od ` G ) ` x ) = c } |
106 |
|
eqcom |
|- ( { z e. B | ( ( od ` G ) ` z ) = c } = { x e. B | ( ( od ` G ) ` x ) = c } <-> { x e. B | ( ( od ` G ) ` x ) = c } = { z e. B | ( ( od ` G ) ` z ) = c } ) |
107 |
105 106
|
mpbi |
|- { x e. B | ( ( od ` G ) ` x ) = c } = { z e. B | ( ( od ` G ) ` z ) = c } |
108 |
107
|
neeq1i |
|- ( { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) <-> { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) |
109 |
108
|
anbi2i |
|- ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) <-> ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) ) |
110 |
107
|
fveq2i |
|- ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) |
111 |
110
|
eqeq1i |
|- ( ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) <-> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) |
112 |
109 111
|
imbi12i |
|- ( ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) <-> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) |
113 |
112
|
imbi2i |
|- ( ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) <-> ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
114 |
113
|
biimpi |
|- ( ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) -> ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
115 |
114
|
ralimi |
|- ( A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
116 |
115
|
adantl |
|- ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
117 |
116
|
adantr |
|- ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
118 |
117
|
adantr |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
119 |
118
|
adantr |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { z e. B | ( ( od ` G ) ` z ) = c } =/= (/) ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = c } ) = ( phi ` c ) ) ) ) |
120 |
1 2 84 85 97 98 99 100 101 119
|
unitscyglem2 |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { z e. B | ( ( od ` G ) ` z ) = d } ) = ( phi ` d ) ) |
121 |
83 120
|
eqtrd |
|- ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
122 |
75 121
|
syl |
|- ( ( ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) /\ a e. B ) /\ ( ( od ` G ) ` a ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
123 |
|
nfv |
|- F/ a ( ( od ` G ) ` x ) = d |
124 |
|
nfv |
|- F/ x ( ( od ` G ) ` a ) = d |
125 |
|
fveqeq2 |
|- ( x = a -> ( ( ( od ` G ) ` x ) = d <-> ( ( od ` G ) ` a ) = d ) ) |
126 |
123 124 125
|
cbvrexw |
|- ( E. x e. B ( ( od ` G ) ` x ) = d <-> E. a e. B ( ( od ` G ) ` a ) = d ) |
127 |
126
|
biimpi |
|- ( E. x e. B ( ( od ` G ) ` x ) = d -> E. a e. B ( ( od ` G ) ` a ) = d ) |
128 |
127
|
adantl |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) -> E. a e. B ( ( od ` G ) ` a ) = d ) |
129 |
122 128
|
r19.29a |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ E. x e. B ( ( od ` G ) ` x ) = d ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
130 |
129
|
ex |
|- ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) -> ( E. x e. B ( ( od ` G ) ` x ) = d -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |
131 |
130
|
adantr |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( E. x e. B ( ( od ` G ) ` x ) = d -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |
132 |
69 131
|
mpd |
|- ( ( ( ( ( ph /\ d e. NN ) /\ A. c e. NN ( c < d -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) /\ d || ( # ` B ) ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
133 |
66 132
|
syl |
|- ( ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) /\ ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) |
134 |
133
|
ex |
|- ( ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) /\ ph ) -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |
135 |
134
|
ex |
|- ( ( d e. NN /\ A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) ) -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) |
136 |
135
|
ex |
|- ( d e. NN -> ( A. c e. NN ( c < d -> ( ph -> ( ( c || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = c } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = c } ) = ( phi ` c ) ) ) ) -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) ) |
137 |
15 136
|
indstr |
|- ( d e. NN -> ( ph -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) |
138 |
137
|
com12 |
|- ( ph -> ( d e. NN -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) ) |
139 |
138
|
imp |
|- ( ( ph /\ d e. NN ) -> ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |
140 |
139
|
ralrimiva |
|- ( ph -> A. d e. NN ( ( d || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = d } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = d } ) = ( phi ` d ) ) ) |