| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem1.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | unitscyglem1.2 |  |-  .^ = ( .g ` G ) | 
						
							| 3 |  | unitscyglem1.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | unitscyglem1.4 |  |-  ( ph -> B e. Fin ) | 
						
							| 5 |  | unitscyglem1.5 |  |-  ( ph -> A. n e. NN ( # ` { x e. B | ( n .^ x ) = ( 0g ` G ) } ) <_ n ) | 
						
							| 6 |  | unitscyglem4.1 |  |-  ( ph -> D e. NN ) | 
						
							| 7 |  | unitscyglem4.2 |  |-  ( ph -> D || ( # ` B ) ) | 
						
							| 8 |  | nfcv |  |-  F/_ y B | 
						
							| 9 |  | nfcv |  |-  F/_ x B | 
						
							| 10 |  | nfv |  |-  F/ x ( ( od ` G ) ` y ) = D | 
						
							| 11 |  | nfv |  |-  F/ y ( ( od ` G ) ` x ) = D | 
						
							| 12 |  | fveqeq2 |  |-  ( y = x -> ( ( ( od ` G ) ` y ) = D <-> ( ( od ` G ) ` x ) = D ) ) | 
						
							| 13 | 8 9 10 11 12 | cbvrabw |  |-  { y e. B | ( ( od ` G ) ` y ) = D } = { x e. B | ( ( od ` G ) ` x ) = D } | 
						
							| 14 | 13 | fveq2i |  |-  ( # ` { y e. B | ( ( od ` G ) ` y ) = D } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) | 
						
							| 15 | 14 | a1i |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> ( # ` { y e. B | ( ( od ` G ) ` y ) = D } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) | 
						
							| 16 | 7 | adantr |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> D || ( # ` B ) ) | 
						
							| 17 | 16 | ex |  |-  ( ph -> ( { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) -> D || ( # ` B ) ) ) | 
						
							| 18 | 17 | ancrd |  |-  ( ph -> ( { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) -> ( D || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) ) ) | 
						
							| 19 | 18 | imdistani |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> ( ph /\ ( D || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) ) ) | 
						
							| 20 |  | breq1 |  |-  ( m = D -> ( m || ( # ` B ) <-> D || ( # ` B ) ) ) | 
						
							| 21 |  | eqeq2 |  |-  ( m = D -> ( ( ( od ` G ) ` x ) = m <-> ( ( od ` G ) ` x ) = D ) ) | 
						
							| 22 | 21 | rabbidv |  |-  ( m = D -> { x e. B | ( ( od ` G ) ` x ) = m } = { x e. B | ( ( od ` G ) ` x ) = D } ) | 
						
							| 23 | 22 | neeq1d |  |-  ( m = D -> ( { x e. B | ( ( od ` G ) ` x ) = m } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) ) | 
						
							| 24 | 20 23 | anbi12d |  |-  ( m = D -> ( ( m || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = m } =/= (/) ) <-> ( D || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) ) ) | 
						
							| 25 | 22 | fveq2d |  |-  ( m = D -> ( # ` { x e. B | ( ( od ` G ) ` x ) = m } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) ) | 
						
							| 26 |  | fveq2 |  |-  ( m = D -> ( phi ` m ) = ( phi ` D ) ) | 
						
							| 27 | 25 26 | eqeq12d |  |-  ( m = D -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = m } ) = ( phi ` m ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) ) | 
						
							| 28 | 24 27 | imbi12d |  |-  ( m = D -> ( ( ( m || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = m } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = m } ) = ( phi ` m ) ) <-> ( ( D || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) ) ) | 
						
							| 29 | 1 2 3 4 5 | unitscyglem3 |  |-  ( ph -> A. m e. NN ( ( m || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = m } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = m } ) = ( phi ` m ) ) ) | 
						
							| 30 | 28 29 6 | rspcdva |  |-  ( ph -> ( ( D || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) ) | 
						
							| 31 | 30 | imp |  |-  ( ( ph /\ ( D || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) | 
						
							| 32 | 19 31 | syl |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = D } ) = ( phi ` D ) ) | 
						
							| 33 | 15 32 | eqtrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> ( # ` { y e. B | ( ( od ` G ) ` y ) = D } ) = ( phi ` D ) ) | 
						
							| 34 |  | id |  |-  ( { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) -> { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) | 
						
							| 35 | 34 | necon1bi |  |-  ( -. { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) -> { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ph /\ -. { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) | 
						
							| 37 | 3 | adantr |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> G e. Grp ) | 
						
							| 38 | 4 | adantr |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> B e. Fin ) | 
						
							| 39 | 1 37 38 | hashfingrpnn |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) e. NN ) | 
						
							| 40 | 1 2 37 38 39 | grpods |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( # ` { x e. B | ( ( # ` B ) .^ x ) = ( 0g ` G ) } ) ) | 
						
							| 41 |  | simpr |  |-  ( ( ( ( ph /\ x e. B ) /\ l e. ZZ ) /\ ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) -> ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) | 
						
							| 42 | 41 | eqcomd |  |-  ( ( ( ( ph /\ x e. B ) /\ l e. ZZ ) /\ ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) -> ( # ` B ) = ( l x. ( ( od ` G ) ` x ) ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( ( ( ph /\ x e. B ) /\ l e. ZZ ) /\ ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) -> ( ( # ` B ) .^ x ) = ( ( l x. ( ( od ` G ) ` x ) ) .^ x ) ) | 
						
							| 44 | 3 | adantr |  |-  ( ( ph /\ x e. B ) -> G e. Grp ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> G e. Grp ) | 
						
							| 46 |  | simpr |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> l e. ZZ ) | 
						
							| 47 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 48 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 49 | 1 47 48 | odcld |  |-  ( ( ph /\ x e. B ) -> ( ( od ` G ) ` x ) e. NN0 ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( ( od ` G ) ` x ) e. NN0 ) | 
						
							| 51 | 50 | nn0zd |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( ( od ` G ) ` x ) e. ZZ ) | 
						
							| 52 |  | simplr |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> x e. B ) | 
						
							| 53 | 46 51 52 | 3jca |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( l e. ZZ /\ ( ( od ` G ) ` x ) e. ZZ /\ x e. B ) ) | 
						
							| 54 | 1 2 | mulgass |  |-  ( ( G e. Grp /\ ( l e. ZZ /\ ( ( od ` G ) ` x ) e. ZZ /\ x e. B ) ) -> ( ( l x. ( ( od ` G ) ` x ) ) .^ x ) = ( l .^ ( ( ( od ` G ) ` x ) .^ x ) ) ) | 
						
							| 55 | 45 53 54 | syl2anc |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( ( l x. ( ( od ` G ) ` x ) ) .^ x ) = ( l .^ ( ( ( od ` G ) ` x ) .^ x ) ) ) | 
						
							| 56 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 57 | 1 47 2 56 | odid |  |-  ( x e. B -> ( ( ( od ` G ) ` x ) .^ x ) = ( 0g ` G ) ) | 
						
							| 58 | 52 57 | syl |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( ( ( od ` G ) ` x ) .^ x ) = ( 0g ` G ) ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( l .^ ( ( ( od ` G ) ` x ) .^ x ) ) = ( l .^ ( 0g ` G ) ) ) | 
						
							| 60 | 1 2 56 | mulgz |  |-  ( ( G e. Grp /\ l e. ZZ ) -> ( l .^ ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 61 | 44 60 | sylan |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( l .^ ( 0g ` G ) ) = ( 0g ` G ) ) | 
						
							| 62 | 59 61 | eqtrd |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( l .^ ( ( ( od ` G ) ` x ) .^ x ) ) = ( 0g ` G ) ) | 
						
							| 63 | 55 62 | eqtrd |  |-  ( ( ( ph /\ x e. B ) /\ l e. ZZ ) -> ( ( l x. ( ( od ` G ) ` x ) ) .^ x ) = ( 0g ` G ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( ( ph /\ x e. B ) /\ l e. ZZ ) /\ ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) -> ( ( l x. ( ( od ` G ) ` x ) ) .^ x ) = ( 0g ` G ) ) | 
						
							| 65 | 43 64 | eqtrd |  |-  ( ( ( ( ph /\ x e. B ) /\ l e. ZZ ) /\ ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) -> ( ( # ` B ) .^ x ) = ( 0g ` G ) ) | 
						
							| 66 | 4 | adantr |  |-  ( ( ph /\ x e. B ) -> B e. Fin ) | 
						
							| 67 | 1 47 | oddvds2 |  |-  ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) | 
						
							| 68 | 44 66 48 67 | syl3anc |  |-  ( ( ph /\ x e. B ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) | 
						
							| 69 | 49 | nn0zd |  |-  ( ( ph /\ x e. B ) -> ( ( od ` G ) ` x ) e. ZZ ) | 
						
							| 70 |  | hashcl |  |-  ( B e. Fin -> ( # ` B ) e. NN0 ) | 
						
							| 71 | 66 70 | syl |  |-  ( ( ph /\ x e. B ) -> ( # ` B ) e. NN0 ) | 
						
							| 72 | 71 | nn0zd |  |-  ( ( ph /\ x e. B ) -> ( # ` B ) e. ZZ ) | 
						
							| 73 |  | divides |  |-  ( ( ( ( od ` G ) ` x ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( ( od ` G ) ` x ) || ( # ` B ) <-> E. l e. ZZ ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) ) | 
						
							| 74 | 69 72 73 | syl2anc |  |-  ( ( ph /\ x e. B ) -> ( ( ( od ` G ) ` x ) || ( # ` B ) <-> E. l e. ZZ ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) ) | 
						
							| 75 | 68 74 | mpbid |  |-  ( ( ph /\ x e. B ) -> E. l e. ZZ ( l x. ( ( od ` G ) ` x ) ) = ( # ` B ) ) | 
						
							| 76 | 65 75 | r19.29a |  |-  ( ( ph /\ x e. B ) -> ( ( # ` B ) .^ x ) = ( 0g ` G ) ) | 
						
							| 77 | 76 | rabeqcda |  |-  ( ph -> { x e. B | ( ( # ` B ) .^ x ) = ( 0g ` G ) } = B ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> { x e. B | ( ( # ` B ) .^ x ) = ( 0g ` G ) } = B ) | 
						
							| 79 | 78 | fveq2d |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` { x e. B | ( ( # ` B ) .^ x ) = ( 0g ` G ) } ) = ( # ` B ) ) | 
						
							| 80 | 40 79 | eqtr2d |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) = sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 81 |  | nfv |  |-  F/ k ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) | 
						
							| 82 |  | nfcv |  |-  F/_ k ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) | 
						
							| 83 |  | fzfid |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( 1 ... ( # ` B ) ) e. Fin ) | 
						
							| 84 |  | ssrab2 |  |-  { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } C_ ( 1 ... ( # ` B ) ) | 
						
							| 85 | 84 | a1i |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } C_ ( 1 ... ( # ` B ) ) ) | 
						
							| 86 | 83 85 | ssfid |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } e. Fin ) | 
						
							| 87 | 38 | adantr |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> B e. Fin ) | 
						
							| 88 |  | ssrab2 |  |-  { x e. B | ( ( od ` G ) ` x ) = k } C_ B | 
						
							| 89 | 88 | a1i |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> { x e. B | ( ( od ` G ) ` x ) = k } C_ B ) | 
						
							| 90 | 87 89 | ssfid |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> { x e. B | ( ( od ` G ) ` x ) = k } e. Fin ) | 
						
							| 91 |  | hashcl |  |-  ( { x e. B | ( ( od ` G ) ` x ) = k } e. Fin -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) | 
						
							| 92 | 90 91 | syl |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) | 
						
							| 93 | 92 | nn0cnd |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. CC ) | 
						
							| 94 |  | breq1 |  |-  ( a = ( # ` B ) -> ( a || ( # ` B ) <-> ( # ` B ) || ( # ` B ) ) ) | 
						
							| 95 |  | 1zzd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> 1 e. ZZ ) | 
						
							| 96 | 39 | nnzd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) e. ZZ ) | 
						
							| 97 | 39 | nnge1d |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> 1 <_ ( # ` B ) ) | 
						
							| 98 | 39 | nnred |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) e. RR ) | 
						
							| 99 | 98 | leidd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) <_ ( # ` B ) ) | 
						
							| 100 | 95 96 96 97 99 | elfzd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) e. ( 1 ... ( # ` B ) ) ) | 
						
							| 101 |  | iddvds |  |-  ( ( # ` B ) e. ZZ -> ( # ` B ) || ( # ` B ) ) | 
						
							| 102 | 96 101 | syl |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) || ( # ` B ) ) | 
						
							| 103 | 94 100 102 | elrabd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) | 
						
							| 104 |  | eqeq2 |  |-  ( k = ( # ` B ) -> ( ( ( od ` G ) ` x ) = k <-> ( ( od ` G ) ` x ) = ( # ` B ) ) ) | 
						
							| 105 | 104 | rabbidv |  |-  ( k = ( # ` B ) -> { x e. B | ( ( od ` G ) ` x ) = k } = { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) | 
						
							| 106 | 105 | fveq2d |  |-  ( k = ( # ` B ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) ) | 
						
							| 107 | 81 82 86 93 103 106 | fsumsplit1 |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) + sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) ) | 
						
							| 108 |  | ssrab2 |  |-  { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } C_ B | 
						
							| 109 | 108 | a1i |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } C_ B ) | 
						
							| 110 | 38 109 | ssfid |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } e. Fin ) | 
						
							| 111 |  | hashcl |  |-  ( { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } e. Fin -> ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) e. NN0 ) | 
						
							| 112 | 110 111 | syl |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) e. NN0 ) | 
						
							| 113 | 112 | nn0red |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) e. RR ) | 
						
							| 114 |  | diffi |  |-  ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } e. Fin -> ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) e. Fin ) | 
						
							| 115 | 86 114 | syl |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) e. Fin ) | 
						
							| 116 | 38 | adantr |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> B e. Fin ) | 
						
							| 117 | 88 | a1i |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> { x e. B | ( ( od ` G ) ` x ) = k } C_ B ) | 
						
							| 118 | 116 117 | ssfid |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> { x e. B | ( ( od ` G ) ` x ) = k } e. Fin ) | 
						
							| 119 | 118 91 | syl |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) | 
						
							| 120 | 115 119 | fsumnn0cl |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) | 
						
							| 121 | 120 | nn0red |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. RR ) | 
						
							| 122 | 39 | phicld |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( phi ` ( # ` B ) ) e. NN ) | 
						
							| 123 | 122 | nnred |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( phi ` ( # ` B ) ) e. RR ) | 
						
							| 124 |  | eldifi |  |-  ( k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) -> k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) | 
						
							| 125 |  | breq1 |  |-  ( a = k -> ( a || ( # ` B ) <-> k || ( # ` B ) ) ) | 
						
							| 126 | 125 | elrab |  |-  ( k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } <-> ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) ) | 
						
							| 127 | 126 | biimpi |  |-  ( k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } -> ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) ) | 
						
							| 128 |  | elfzelz |  |-  ( k e. ( 1 ... ( # ` B ) ) -> k e. ZZ ) | 
						
							| 129 |  | elfzle1 |  |-  ( k e. ( 1 ... ( # ` B ) ) -> 1 <_ k ) | 
						
							| 130 | 128 129 | jca |  |-  ( k e. ( 1 ... ( # ` B ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 132 | 127 131 | syl |  |-  ( k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 133 | 124 132 | syl |  |-  ( k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 134 | 133 | adantl |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 135 |  | elnnz1 |  |-  ( k e. NN <-> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 136 | 134 135 | sylibr |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> k e. NN ) | 
						
							| 137 |  | phicl |  |-  ( k e. NN -> ( phi ` k ) e. NN ) | 
						
							| 138 | 136 137 | syl |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> ( phi ` k ) e. NN ) | 
						
							| 139 | 138 | nnred |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> ( phi ` k ) e. RR ) | 
						
							| 140 | 115 139 | fsumrecl |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( phi ` k ) e. RR ) | 
						
							| 141 |  | simplll |  |-  ( ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) ) /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ph ) | 
						
							| 142 |  | simplr |  |-  ( ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) ) /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> z e. B ) | 
						
							| 143 | 141 142 | jca |  |-  ( ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) ) /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ph /\ z e. B ) ) | 
						
							| 144 |  | simpr |  |-  ( ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) ) /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( od ` G ) ` z ) = ( # ` B ) ) | 
						
							| 145 | 143 144 | jca |  |-  ( ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) ) /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) ) | 
						
							| 146 |  | fveqeq2 |  |-  ( x = ( ( ( # ` B ) / D ) .^ z ) -> ( ( ( od ` G ) ` x ) = D <-> ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) = D ) ) | 
						
							| 147 | 3 | ad2antrr |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> G e. Grp ) | 
						
							| 148 | 7 | ad2antrr |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> D || ( # ` B ) ) | 
						
							| 149 | 6 | ad2antrr |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> D e. NN ) | 
						
							| 150 | 149 | nnzd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> D e. ZZ ) | 
						
							| 151 | 149 | nnne0d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> D =/= 0 ) | 
						
							| 152 | 4 | ad2antrr |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> B e. Fin ) | 
						
							| 153 | 152 70 | syl |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( # ` B ) e. NN0 ) | 
						
							| 154 | 153 | nn0zd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( # ` B ) e. ZZ ) | 
						
							| 155 |  | dvdsval2 |  |-  ( ( D e. ZZ /\ D =/= 0 /\ ( # ` B ) e. ZZ ) -> ( D || ( # ` B ) <-> ( ( # ` B ) / D ) e. ZZ ) ) | 
						
							| 156 | 150 151 154 155 | syl3anc |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( D || ( # ` B ) <-> ( ( # ` B ) / D ) e. ZZ ) ) | 
						
							| 157 | 148 156 | mpbid |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( # ` B ) / D ) e. ZZ ) | 
						
							| 158 |  | simplr |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> z e. B ) | 
						
							| 159 | 1 2 147 157 158 | mulgcld |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) .^ z ) e. B ) | 
						
							| 160 | 153 | nn0cnd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( # ` B ) e. CC ) | 
						
							| 161 | 6 | nncnd |  |-  ( ph -> D e. CC ) | 
						
							| 162 | 161 | ad2antrr |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> D e. CC ) | 
						
							| 163 | 1 147 152 | hashfingrpnn |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( # ` B ) e. NN ) | 
						
							| 164 | 163 | nnne0d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( # ` B ) =/= 0 ) | 
						
							| 165 | 160 160 162 164 151 | divdiv2d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( # ` B ) / ( ( # ` B ) / D ) ) = ( ( ( # ` B ) x. D ) / ( # ` B ) ) ) | 
						
							| 166 | 162 160 164 | divcan3d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) x. D ) / ( # ` B ) ) = D ) | 
						
							| 167 | 165 166 | eqtr2d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> D = ( ( # ` B ) / ( ( # ` B ) / D ) ) ) | 
						
							| 168 |  | simpr |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( od ` G ) ` z ) = ( # ` B ) ) | 
						
							| 169 | 168 | oveq2d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) = ( ( ( # ` B ) / D ) gcd ( # ` B ) ) ) | 
						
							| 170 | 4 70 | syl |  |-  ( ph -> ( # ` B ) e. NN0 ) | 
						
							| 171 | 170 | nn0cnd |  |-  ( ph -> ( # ` B ) e. CC ) | 
						
							| 172 | 6 | nnne0d |  |-  ( ph -> D =/= 0 ) | 
						
							| 173 | 171 161 172 | divcan2d |  |-  ( ph -> ( D x. ( ( # ` B ) / D ) ) = ( # ` B ) ) | 
						
							| 174 | 173 | eqcomd |  |-  ( ph -> ( # ` B ) = ( D x. ( ( # ` B ) / D ) ) ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ph /\ z e. B ) -> ( # ` B ) = ( D x. ( ( # ` B ) / D ) ) ) | 
						
							| 176 | 175 | adantr |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( # ` B ) = ( D x. ( ( # ` B ) / D ) ) ) | 
						
							| 177 | 176 | oveq2d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) gcd ( # ` B ) ) = ( ( ( # ` B ) / D ) gcd ( D x. ( ( # ` B ) / D ) ) ) ) | 
						
							| 178 |  | nndivdvds |  |-  ( ( ( # ` B ) e. NN /\ D e. NN ) -> ( D || ( # ` B ) <-> ( ( # ` B ) / D ) e. NN ) ) | 
						
							| 179 | 163 149 178 | syl2anc |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( D || ( # ` B ) <-> ( ( # ` B ) / D ) e. NN ) ) | 
						
							| 180 | 148 179 | mpbid |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( # ` B ) / D ) e. NN ) | 
						
							| 181 | 180 | nnnn0d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( # ` B ) / D ) e. NN0 ) | 
						
							| 182 | 181 150 | gcdmultipled |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) gcd ( D x. ( ( # ` B ) / D ) ) ) = ( ( # ` B ) / D ) ) | 
						
							| 183 | 177 182 | eqtrd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) gcd ( # ` B ) ) = ( ( # ` B ) / D ) ) | 
						
							| 184 | 169 183 | eqtrd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) = ( ( # ` B ) / D ) ) | 
						
							| 185 | 184 | eqcomd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( # ` B ) / D ) = ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) ) | 
						
							| 186 | 185 | oveq2d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( # ` B ) / ( ( # ` B ) / D ) ) = ( ( # ` B ) / ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) ) ) | 
						
							| 187 | 167 186 | eqtrd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> D = ( ( # ` B ) / ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) ) ) | 
						
							| 188 | 168 | eqcomd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( # ` B ) = ( ( od ` G ) ` z ) ) | 
						
							| 189 | 1 47 2 | odmulg |  |-  ( ( G e. Grp /\ z e. B /\ ( ( # ` B ) / D ) e. ZZ ) -> ( ( od ` G ) ` z ) = ( ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) x. ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) ) ) | 
						
							| 190 | 147 158 157 189 | syl3anc |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( od ` G ) ` z ) = ( ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) x. ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) ) ) | 
						
							| 191 | 188 190 | eqtrd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( # ` B ) = ( ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) x. ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) ) ) | 
						
							| 192 | 191 | eqcomd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) x. ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) ) = ( # ` B ) ) | 
						
							| 193 | 157 | zcnd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( # ` B ) / D ) e. CC ) | 
						
							| 194 | 184 193 | eqeltrd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) e. CC ) | 
						
							| 195 | 1 47 159 | odcld |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) e. NN0 ) | 
						
							| 196 | 195 | nn0cnd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) e. CC ) | 
						
							| 197 | 168 154 | eqeltrd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( od ` G ) ` z ) e. ZZ ) | 
						
							| 198 | 168 164 | eqnetrd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( od ` G ) ` z ) =/= 0 ) | 
						
							| 199 | 157 197 198 | 3jca |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) e. ZZ /\ ( ( od ` G ) ` z ) e. ZZ /\ ( ( od ` G ) ` z ) =/= 0 ) ) | 
						
							| 200 |  | gcd2n0cl |  |-  ( ( ( ( # ` B ) / D ) e. ZZ /\ ( ( od ` G ) ` z ) e. ZZ /\ ( ( od ` G ) ` z ) =/= 0 ) -> ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) e. NN ) | 
						
							| 201 | 199 200 | syl |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) e. NN ) | 
						
							| 202 | 201 | nnne0d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) =/= 0 ) | 
						
							| 203 | 160 194 196 202 | divmuld |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) ) = ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) <-> ( ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) x. ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) ) = ( # ` B ) ) ) | 
						
							| 204 | 192 203 | mpbird |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( # ` B ) / ( ( ( # ` B ) / D ) gcd ( ( od ` G ) ` z ) ) ) = ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) ) | 
						
							| 205 | 187 204 | eqtr2d |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( od ` G ) ` ( ( ( # ` B ) / D ) .^ z ) ) = D ) | 
						
							| 206 | 146 159 205 | elrabd |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> ( ( ( # ` B ) / D ) .^ z ) e. { x e. B | ( ( od ` G ) ` x ) = D } ) | 
						
							| 207 |  | ne0i |  |-  ( ( ( ( # ` B ) / D ) .^ z ) e. { x e. B | ( ( od ` G ) ` x ) = D } -> { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) | 
						
							| 208 | 206 207 | syl |  |-  ( ( ( ph /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) | 
						
							| 209 | 145 208 | syl |  |-  ( ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) ) /\ z e. B ) /\ ( ( od ` G ) ` z ) = ( # ` B ) ) -> { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) | 
						
							| 210 |  | rabn0 |  |-  ( { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) <-> E. x e. B ( ( od ` G ) ` x ) = ( # ` B ) ) | 
						
							| 211 |  | nfv |  |-  F/ z ( ( od ` G ) ` x ) = ( # ` B ) | 
						
							| 212 |  | nfv |  |-  F/ x ( ( od ` G ) ` z ) = ( # ` B ) | 
						
							| 213 |  | fveqeq2 |  |-  ( x = z -> ( ( ( od ` G ) ` x ) = ( # ` B ) <-> ( ( od ` G ) ` z ) = ( # ` B ) ) ) | 
						
							| 214 | 211 212 213 | cbvrexw |  |-  ( E. x e. B ( ( od ` G ) ` x ) = ( # ` B ) <-> E. z e. B ( ( od ` G ) ` z ) = ( # ` B ) ) | 
						
							| 215 | 210 214 | bitri |  |-  ( { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) <-> E. z e. B ( ( od ` G ) ` z ) = ( # ` B ) ) | 
						
							| 216 | 215 | biimpi |  |-  ( { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) -> E. z e. B ( ( od ` G ) ` z ) = ( # ` B ) ) | 
						
							| 217 | 216 | adantl |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) ) -> E. z e. B ( ( od ` G ) ` z ) = ( # ` B ) ) | 
						
							| 218 | 209 217 | r19.29a |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) ) -> { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) | 
						
							| 219 | 218 | ex |  |-  ( ph -> ( { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } =/= (/) -> { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) ) | 
						
							| 220 | 219 | necon4d |  |-  ( ph -> ( { x e. B | ( ( od ` G ) ` x ) = D } = (/) -> { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } = (/) ) ) | 
						
							| 221 | 220 | imp |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } = (/) ) | 
						
							| 222 | 221 | fveq2d |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) = ( # ` (/) ) ) | 
						
							| 223 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 224 | 223 | a1i |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` (/) ) = 0 ) | 
						
							| 225 | 222 224 | eqtrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) = 0 ) | 
						
							| 226 | 122 | nngt0d |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> 0 < ( phi ` ( # ` B ) ) ) | 
						
							| 227 | 225 226 | eqbrtrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) < ( phi ` ( # ` B ) ) ) | 
						
							| 228 |  | eldif |  |-  ( z e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) <-> ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) ) | 
						
							| 229 | 228 | biimpi |  |-  ( z e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) -> ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) ) | 
						
							| 230 | 229 | adantl |  |-  ( ( ph /\ z e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) ) | 
						
							| 231 |  | breq1 |  |-  ( a = z -> ( a || ( # ` B ) <-> z || ( # ` B ) ) ) | 
						
							| 232 | 231 | elrab |  |-  ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } <-> ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) ) | 
						
							| 233 | 232 | biimpi |  |-  ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } -> ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) ) | 
						
							| 234 | 233 | adantr |  |-  ( ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) -> ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) ) | 
						
							| 235 |  | velsn |  |-  ( z e. { ( # ` B ) } <-> z = ( # ` B ) ) | 
						
							| 236 | 235 | bicomi |  |-  ( z = ( # ` B ) <-> z e. { ( # ` B ) } ) | 
						
							| 237 | 236 | biimpi |  |-  ( z = ( # ` B ) -> z e. { ( # ` B ) } ) | 
						
							| 238 | 237 | necon3bi |  |-  ( -. z e. { ( # ` B ) } -> z =/= ( # ` B ) ) | 
						
							| 239 | 238 | adantl |  |-  ( ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) -> z =/= ( # ` B ) ) | 
						
							| 240 | 234 239 | jca |  |-  ( ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) -> ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) | 
						
							| 241 | 240 | adantl |  |-  ( ( ph /\ ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) ) -> ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) | 
						
							| 242 |  | 1zzd |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> 1 e. ZZ ) | 
						
							| 243 | 4 | adantr |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> B e. Fin ) | 
						
							| 244 | 243 70 | syl |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> ( # ` B ) e. NN0 ) | 
						
							| 245 | 244 | nn0zd |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> ( # ` B ) e. ZZ ) | 
						
							| 246 | 245 242 | zsubcld |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> ( ( # ` B ) - 1 ) e. ZZ ) | 
						
							| 247 |  | elfzelz |  |-  ( z e. ( 1 ... ( # ` B ) ) -> z e. ZZ ) | 
						
							| 248 | 247 | adantr |  |-  ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) -> z e. ZZ ) | 
						
							| 249 | 248 | adantr |  |-  ( ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) -> z e. ZZ ) | 
						
							| 250 | 249 | adantl |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z e. ZZ ) | 
						
							| 251 |  | elfzle1 |  |-  ( z e. ( 1 ... ( # ` B ) ) -> 1 <_ z ) | 
						
							| 252 | 251 | adantr |  |-  ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) -> 1 <_ z ) | 
						
							| 253 | 252 | adantr |  |-  ( ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) -> 1 <_ z ) | 
						
							| 254 | 253 | adantl |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> 1 <_ z ) | 
						
							| 255 |  | elfzle2 |  |-  ( z e. ( 1 ... ( # ` B ) ) -> z <_ ( # ` B ) ) | 
						
							| 256 | 255 | adantr |  |-  ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) -> z <_ ( # ` B ) ) | 
						
							| 257 | 256 | adantr |  |-  ( ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) -> z <_ ( # ` B ) ) | 
						
							| 258 | 257 | adantl |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z <_ ( # ` B ) ) | 
						
							| 259 |  | simprr |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z =/= ( # ` B ) ) | 
						
							| 260 | 259 | necomd |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> ( # ` B ) =/= z ) | 
						
							| 261 | 258 260 | jca |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> ( z <_ ( # ` B ) /\ ( # ` B ) =/= z ) ) | 
						
							| 262 | 250 | zred |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z e. RR ) | 
						
							| 263 | 244 | nn0red |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> ( # ` B ) e. RR ) | 
						
							| 264 | 262 263 | ltlend |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> ( z < ( # ` B ) <-> ( z <_ ( # ` B ) /\ ( # ` B ) =/= z ) ) ) | 
						
							| 265 | 261 264 | mpbird |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z < ( # ` B ) ) | 
						
							| 266 | 250 245 | zltlem1d |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> ( z < ( # ` B ) <-> z <_ ( ( # ` B ) - 1 ) ) ) | 
						
							| 267 | 265 266 | mpbid |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z <_ ( ( # ` B ) - 1 ) ) | 
						
							| 268 | 242 246 250 254 267 | elfzd |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 269 |  | simprlr |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z || ( # ` B ) ) | 
						
							| 270 | 231 268 269 | elrabd |  |-  ( ( ph /\ ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) ) -> z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) | 
						
							| 271 | 270 | ex |  |-  ( ph -> ( ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) -> z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) ) | 
						
							| 272 | 271 | adantr |  |-  ( ( ph /\ ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) ) -> ( ( ( z e. ( 1 ... ( # ` B ) ) /\ z || ( # ` B ) ) /\ z =/= ( # ` B ) ) -> z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) ) | 
						
							| 273 | 241 272 | mpd |  |-  ( ( ph /\ ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) ) -> z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) | 
						
							| 274 | 273 | ex |  |-  ( ph -> ( ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) -> z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) ) | 
						
							| 275 | 274 | adantr |  |-  ( ( ph /\ z e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> ( ( z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } /\ -. z e. { ( # ` B ) } ) -> z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) ) | 
						
							| 276 | 230 275 | mpd |  |-  ( ( ph /\ z e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) -> z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) | 
						
							| 277 | 276 | ex |  |-  ( ph -> ( z e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) -> z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) ) | 
						
							| 278 | 277 | ssrdv |  |-  ( ph -> ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) C_ { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) | 
						
							| 279 |  | 1zzd |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> 1 e. ZZ ) | 
						
							| 280 | 170 | nn0zd |  |-  ( ph -> ( # ` B ) e. ZZ ) | 
						
							| 281 | 280 | adantr |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> ( # ` B ) e. ZZ ) | 
						
							| 282 |  | elfzelz |  |-  ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) -> z e. ZZ ) | 
						
							| 283 | 282 | adantl |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> z e. ZZ ) | 
						
							| 284 |  | elfzle1 |  |-  ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) -> 1 <_ z ) | 
						
							| 285 | 284 | adantl |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> 1 <_ z ) | 
						
							| 286 | 283 | zred |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> z e. RR ) | 
						
							| 287 | 281 | zred |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> ( # ` B ) e. RR ) | 
						
							| 288 |  | 1red |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> 1 e. RR ) | 
						
							| 289 | 287 288 | resubcld |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> ( ( # ` B ) - 1 ) e. RR ) | 
						
							| 290 |  | elfzle2 |  |-  ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) -> z <_ ( ( # ` B ) - 1 ) ) | 
						
							| 291 | 290 | adantl |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> z <_ ( ( # ` B ) - 1 ) ) | 
						
							| 292 | 287 | lem1d |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> ( ( # ` B ) - 1 ) <_ ( # ` B ) ) | 
						
							| 293 | 286 289 287 291 292 | letrd |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> z <_ ( # ` B ) ) | 
						
							| 294 | 279 281 283 285 293 | elfzd |  |-  ( ( ph /\ z e. ( 1 ... ( ( # ` B ) - 1 ) ) ) -> z e. ( 1 ... ( # ` B ) ) ) | 
						
							| 295 | 294 | ex |  |-  ( ph -> ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) -> z e. ( 1 ... ( # ` B ) ) ) ) | 
						
							| 296 | 295 | ssrdv |  |-  ( ph -> ( 1 ... ( ( # ` B ) - 1 ) ) C_ ( 1 ... ( # ` B ) ) ) | 
						
							| 297 |  | rabss2 |  |-  ( ( 1 ... ( ( # ` B ) - 1 ) ) C_ ( 1 ... ( # ` B ) ) -> { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } C_ { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) | 
						
							| 298 | 296 297 | syl |  |-  ( ph -> { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } C_ { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) | 
						
							| 299 | 298 | sseld |  |-  ( ph -> ( z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } -> z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) ) | 
						
							| 300 | 299 | imp |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> z e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) | 
						
							| 301 | 170 | ad2antrr |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> ( # ` B ) e. NN0 ) | 
						
							| 302 | 301 | nn0red |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> ( # ` B ) e. RR ) | 
						
							| 303 | 302 | leidd |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> ( # ` B ) <_ ( # ` B ) ) | 
						
							| 304 |  | simpr |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> z = ( # ` B ) ) | 
						
							| 305 | 304 | eqcomd |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> ( # ` B ) = z ) | 
						
							| 306 | 231 | elrab |  |-  ( z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } <-> ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ z || ( # ` B ) ) ) | 
						
							| 307 | 306 | biimpi |  |-  ( z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } -> ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ z || ( # ` B ) ) ) | 
						
							| 308 | 307 | adantl |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ z || ( # ` B ) ) ) | 
						
							| 309 | 291 | adantrr |  |-  ( ( ph /\ ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ z || ( # ` B ) ) ) -> z <_ ( ( # ` B ) - 1 ) ) | 
						
							| 310 | 309 | ex |  |-  ( ph -> ( ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ z || ( # ` B ) ) -> z <_ ( ( # ` B ) - 1 ) ) ) | 
						
							| 311 | 310 | adantr |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( ( z e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ z || ( # ` B ) ) -> z <_ ( ( # ` B ) - 1 ) ) ) | 
						
							| 312 | 308 311 | mpd |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> z <_ ( ( # ` B ) - 1 ) ) | 
						
							| 313 | 300 233 248 | 3syl |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> z e. ZZ ) | 
						
							| 314 | 280 | adantr |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( # ` B ) e. ZZ ) | 
						
							| 315 | 313 314 | zltlem1d |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( z < ( # ` B ) <-> z <_ ( ( # ` B ) - 1 ) ) ) | 
						
							| 316 | 312 315 | mpbird |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> z < ( # ` B ) ) | 
						
							| 317 | 316 | adantr |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> z < ( # ` B ) ) | 
						
							| 318 | 305 317 | eqbrtrd |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> ( # ` B ) < ( # ` B ) ) | 
						
							| 319 | 302 302 | ltnled |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> ( ( # ` B ) < ( # ` B ) <-> -. ( # ` B ) <_ ( # ` B ) ) ) | 
						
							| 320 | 318 319 | mpbid |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> -. ( # ` B ) <_ ( # ` B ) ) | 
						
							| 321 | 303 320 | pm2.21dd |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z = ( # ` B ) ) -> z =/= ( # ` B ) ) | 
						
							| 322 |  | simpr |  |-  ( ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ z =/= ( # ` B ) ) -> z =/= ( # ` B ) ) | 
						
							| 323 | 321 322 | pm2.61dane |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> z =/= ( # ` B ) ) | 
						
							| 324 | 300 323 | eldifsnd |  |-  ( ( ph /\ z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> z e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) | 
						
							| 325 | 324 | ex |  |-  ( ph -> ( z e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } -> z e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) ) | 
						
							| 326 | 325 | ssrdv |  |-  ( ph -> { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } C_ ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ) | 
						
							| 327 | 278 326 | eqssd |  |-  ( ph -> ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) = { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) | 
						
							| 328 | 327 | sumeq1d |  |-  ( ph -> sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = sum_ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 329 |  | fzfid |  |-  ( ph -> ( 1 ... ( ( # ` B ) - 1 ) ) e. Fin ) | 
						
							| 330 |  | ssrab2 |  |-  { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } C_ ( 1 ... ( ( # ` B ) - 1 ) ) | 
						
							| 331 | 330 | a1i |  |-  ( ph -> { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } C_ ( 1 ... ( ( # ` B ) - 1 ) ) ) | 
						
							| 332 | 329 331 | ssfid |  |-  ( ph -> { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } e. Fin ) | 
						
							| 333 | 4 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> B e. Fin ) | 
						
							| 334 | 88 | a1i |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> { x e. B | ( ( od ` G ) ` x ) = k } C_ B ) | 
						
							| 335 | 333 334 | ssfid |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> { x e. B | ( ( od ` G ) ` x ) = k } e. Fin ) | 
						
							| 336 | 335 91 | syl |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. NN0 ) | 
						
							| 337 | 336 | nn0red |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. RR ) | 
						
							| 338 | 125 | elrab |  |-  ( k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } <-> ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) | 
						
							| 339 | 338 | biimpi |  |-  ( k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } -> ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) | 
						
							| 340 | 339 | adantl |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) | 
						
							| 341 |  | elfzelz |  |-  ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) -> k e. ZZ ) | 
						
							| 342 |  | elfzle1 |  |-  ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) -> 1 <_ k ) | 
						
							| 343 | 341 342 | jca |  |-  ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 344 | 343 | adantr |  |-  ( ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 345 | 344 | adantl |  |-  ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 346 | 345 135 | sylibr |  |-  ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) -> k e. NN ) | 
						
							| 347 | 346 | ex |  |-  ( ph -> ( ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) -> k e. NN ) ) | 
						
							| 348 | 347 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) -> k e. NN ) ) | 
						
							| 349 | 340 348 | mpd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> k e. NN ) | 
						
							| 350 | 349 | phicld |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( phi ` k ) e. NN ) | 
						
							| 351 | 350 | nnred |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( phi ` k ) e. RR ) | 
						
							| 352 |  | simpll |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ph ) | 
						
							| 353 | 338 | biimpri |  |-  ( ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) -> k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) | 
						
							| 354 | 353 | adantl |  |-  ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) -> k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) | 
						
							| 355 | 354 | adantr |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) | 
						
							| 356 | 352 355 | jca |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) ) | 
						
							| 357 | 356 337 | syl |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) e. RR ) | 
						
							| 358 |  | simpr |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) | 
						
							| 359 | 356 358 | jca |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) | 
						
							| 360 | 340 | simprd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> k || ( # ` B ) ) | 
						
							| 361 | 360 | adantr |  |-  ( ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> k || ( # ` B ) ) | 
						
							| 362 |  | simpr |  |-  ( ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) | 
						
							| 363 | 361 362 | jca |  |-  ( ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) | 
						
							| 364 |  | breq1 |  |-  ( m = k -> ( m || ( # ` B ) <-> k || ( # ` B ) ) ) | 
						
							| 365 |  | eqeq2 |  |-  ( m = k -> ( ( ( od ` G ) ` x ) = m <-> ( ( od ` G ) ` x ) = k ) ) | 
						
							| 366 | 365 | rabbidv |  |-  ( m = k -> { x e. B | ( ( od ` G ) ` x ) = m } = { x e. B | ( ( od ` G ) ` x ) = k } ) | 
						
							| 367 | 366 | neeq1d |  |-  ( m = k -> ( { x e. B | ( ( od ` G ) ` x ) = m } =/= (/) <-> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) | 
						
							| 368 | 364 367 | anbi12d |  |-  ( m = k -> ( ( m || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = m } =/= (/) ) <-> ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) ) ) | 
						
							| 369 | 366 | fveq2d |  |-  ( m = k -> ( # ` { x e. B | ( ( od ` G ) ` x ) = m } ) = ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) | 
						
							| 370 |  | fveq2 |  |-  ( m = k -> ( phi ` m ) = ( phi ` k ) ) | 
						
							| 371 | 369 370 | eqeq12d |  |-  ( m = k -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = m } ) = ( phi ` m ) <-> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) | 
						
							| 372 | 368 371 | imbi12d |  |-  ( m = k -> ( ( ( m || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = m } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = m } ) = ( phi ` m ) ) <-> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) ) | 
						
							| 373 | 29 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> A. m e. NN ( ( m || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = m } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = m } ) = ( phi ` m ) ) ) | 
						
							| 374 | 372 373 349 | rspcdva |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) | 
						
							| 375 | 374 | adantr |  |-  ( ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( ( k || ( # ` B ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) ) | 
						
							| 376 | 363 375 | mpd |  |-  ( ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) | 
						
							| 377 | 359 376 | syl |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( phi ` k ) ) | 
						
							| 378 | 357 377 | eqled |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ ( phi ` k ) ) | 
						
							| 379 |  | id |  |-  ( { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) -> { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) | 
						
							| 380 | 379 | necon1bi |  |-  ( -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) -> { x e. B | ( ( od ` G ) ` x ) = k } = (/) ) | 
						
							| 381 | 380 | adantl |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> { x e. B | ( ( od ` G ) ` x ) = k } = (/) ) | 
						
							| 382 | 381 | fveq2d |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = ( # ` (/) ) ) | 
						
							| 383 | 223 | a1i |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` (/) ) = 0 ) | 
						
							| 384 | 382 383 | eqtrd |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) = 0 ) | 
						
							| 385 | 346 | adantr |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> k e. NN ) | 
						
							| 386 | 385 | phicld |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( phi ` k ) e. NN ) | 
						
							| 387 | 386 | nnnn0d |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( phi ` k ) e. NN0 ) | 
						
							| 388 | 387 | nn0ge0d |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> 0 <_ ( phi ` k ) ) | 
						
							| 389 | 384 388 | eqbrtrd |  |-  ( ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) /\ -. { x e. B | ( ( od ` G ) ` x ) = k } =/= (/) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ ( phi ` k ) ) | 
						
							| 390 | 378 389 | pm2.61dan |  |-  ( ( ph /\ ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ ( phi ` k ) ) | 
						
							| 391 | 390 | ex |  |-  ( ph -> ( ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ ( phi ` k ) ) ) | 
						
							| 392 | 391 | adantr |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( ( k e. ( 1 ... ( ( # ` B ) - 1 ) ) /\ k || ( # ` B ) ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ ( phi ` k ) ) ) | 
						
							| 393 | 340 392 | mpd |  |-  ( ( ph /\ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ) -> ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ ( phi ` k ) ) | 
						
							| 394 | 332 337 351 393 | fsumle |  |-  ( ph -> sum_ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ sum_ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ( phi ` k ) ) | 
						
							| 395 | 327 | sumeq1d |  |-  ( ph -> sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( phi ` k ) = sum_ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ( phi ` k ) ) | 
						
							| 396 | 395 | eqcomd |  |-  ( ph -> sum_ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ( phi ` k ) = sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( phi ` k ) ) | 
						
							| 397 | 394 396 | breqtrd |  |-  ( ph -> sum_ k e. { a e. ( 1 ... ( ( # ` B ) - 1 ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( phi ` k ) ) | 
						
							| 398 | 328 397 | eqbrtrd |  |-  ( ph -> sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( phi ` k ) ) | 
						
							| 399 | 398 | adantr |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) <_ sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( phi ` k ) ) | 
						
							| 400 | 113 121 123 140 227 399 | ltleaddd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) + sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) < ( ( phi ` ( # ` B ) ) + sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( phi ` k ) ) ) | 
						
							| 401 |  | nfcv |  |-  F/_ k ( phi ` ( # ` B ) ) | 
						
							| 402 |  | simpll |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> ph ) | 
						
							| 403 | 127 | adantl |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) ) | 
						
							| 404 | 402 403 | jca |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> ( ph /\ ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) ) ) | 
						
							| 405 | 131 | adantl |  |-  ( ( ph /\ ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 406 | 405 | adantl |  |-  ( ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) /\ ( ph /\ ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) ) ) -> ( k e. ZZ /\ 1 <_ k ) ) | 
						
							| 407 | 406 135 | sylibr |  |-  ( ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) /\ ( ph /\ ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) ) ) -> k e. NN ) | 
						
							| 408 | 407 | ex |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> ( ( ph /\ ( k e. ( 1 ... ( # ` B ) ) /\ k || ( # ` B ) ) ) -> k e. NN ) ) | 
						
							| 409 | 404 408 | mpd |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> k e. NN ) | 
						
							| 410 | 409 | phicld |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> ( phi ` k ) e. NN ) | 
						
							| 411 | 410 | nncnd |  |-  ( ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) /\ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) -> ( phi ` k ) e. CC ) | 
						
							| 412 |  | fveq2 |  |-  ( k = ( # ` B ) -> ( phi ` k ) = ( phi ` ( # ` B ) ) ) | 
						
							| 413 | 81 401 86 411 103 412 | fsumsplit1 |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( phi ` k ) = ( ( phi ` ( # ` B ) ) + sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( phi ` k ) ) ) | 
						
							| 414 | 400 413 | breqtrrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( ( # ` { x e. B | ( ( od ` G ) ` x ) = ( # ` B ) } ) + sum_ k e. ( { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } \ { ( # ` B ) } ) ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) ) < sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( phi ` k ) ) | 
						
							| 415 | 107 414 | eqbrtrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) < sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( phi ` k ) ) | 
						
							| 416 |  | elfzelz |  |-  ( a e. ( 1 ... ( # ` B ) ) -> a e. ZZ ) | 
						
							| 417 |  | elfzle1 |  |-  ( a e. ( 1 ... ( # ` B ) ) -> 1 <_ a ) | 
						
							| 418 | 416 417 | jca |  |-  ( a e. ( 1 ... ( # ` B ) ) -> ( a e. ZZ /\ 1 <_ a ) ) | 
						
							| 419 | 418 | adantr |  |-  ( ( a e. ( 1 ... ( # ` B ) ) /\ a || ( # ` B ) ) -> ( a e. ZZ /\ 1 <_ a ) ) | 
						
							| 420 | 419 | adantl |  |-  ( ( ph /\ ( a e. ( 1 ... ( # ` B ) ) /\ a || ( # ` B ) ) ) -> ( a e. ZZ /\ 1 <_ a ) ) | 
						
							| 421 |  | elnnz1 |  |-  ( a e. NN <-> ( a e. ZZ /\ 1 <_ a ) ) | 
						
							| 422 | 420 421 | sylibr |  |-  ( ( ph /\ ( a e. ( 1 ... ( # ` B ) ) /\ a || ( # ` B ) ) ) -> a e. NN ) | 
						
							| 423 | 422 | rabss3d |  |-  ( ph -> { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } C_ { a e. NN | a || ( # ` B ) } ) | 
						
							| 424 |  | simpl |  |-  ( ( ph /\ ( a e. NN /\ a || ( # ` B ) ) ) -> ph ) | 
						
							| 425 |  | simprl |  |-  ( ( ph /\ ( a e. NN /\ a || ( # ` B ) ) ) -> a e. NN ) | 
						
							| 426 | 424 425 | jca |  |-  ( ( ph /\ ( a e. NN /\ a || ( # ` B ) ) ) -> ( ph /\ a e. NN ) ) | 
						
							| 427 |  | simprr |  |-  ( ( ph /\ ( a e. NN /\ a || ( # ` B ) ) ) -> a || ( # ` B ) ) | 
						
							| 428 | 426 427 | jca |  |-  ( ( ph /\ ( a e. NN /\ a || ( # ` B ) ) ) -> ( ( ph /\ a e. NN ) /\ a || ( # ` B ) ) ) | 
						
							| 429 |  | 1zzd |  |-  ( ( ( ph /\ a e. NN ) /\ a || ( # ` B ) ) -> 1 e. ZZ ) | 
						
							| 430 | 280 | adantr |  |-  ( ( ph /\ a e. NN ) -> ( # ` B ) e. ZZ ) | 
						
							| 431 | 430 | adantr |  |-  ( ( ( ph /\ a e. NN ) /\ a || ( # ` B ) ) -> ( # ` B ) e. ZZ ) | 
						
							| 432 | 425 | anassrs |  |-  ( ( ( ph /\ a e. NN ) /\ a || ( # ` B ) ) -> a e. NN ) | 
						
							| 433 | 432 | nnzd |  |-  ( ( ( ph /\ a e. NN ) /\ a || ( # ` B ) ) -> a e. ZZ ) | 
						
							| 434 | 432 | nnge1d |  |-  ( ( ( ph /\ a e. NN ) /\ a || ( # ` B ) ) -> 1 <_ a ) | 
						
							| 435 |  | nnz |  |-  ( a e. NN -> a e. ZZ ) | 
						
							| 436 | 435 | adantl |  |-  ( ( ph /\ a e. NN ) -> a e. ZZ ) | 
						
							| 437 | 1 3 4 | hashfingrpnn |  |-  ( ph -> ( # ` B ) e. NN ) | 
						
							| 438 | 437 | adantr |  |-  ( ( ph /\ a e. NN ) -> ( # ` B ) e. NN ) | 
						
							| 439 |  | dvdsle |  |-  ( ( a e. ZZ /\ ( # ` B ) e. NN ) -> ( a || ( # ` B ) -> a <_ ( # ` B ) ) ) | 
						
							| 440 | 436 438 439 | syl2anc |  |-  ( ( ph /\ a e. NN ) -> ( a || ( # ` B ) -> a <_ ( # ` B ) ) ) | 
						
							| 441 | 440 | imp |  |-  ( ( ( ph /\ a e. NN ) /\ a || ( # ` B ) ) -> a <_ ( # ` B ) ) | 
						
							| 442 | 429 431 433 434 441 | elfzd |  |-  ( ( ( ph /\ a e. NN ) /\ a || ( # ` B ) ) -> a e. ( 1 ... ( # ` B ) ) ) | 
						
							| 443 | 428 442 | syl |  |-  ( ( ph /\ ( a e. NN /\ a || ( # ` B ) ) ) -> a e. ( 1 ... ( # ` B ) ) ) | 
						
							| 444 | 443 | rabss3d |  |-  ( ph -> { a e. NN | a || ( # ` B ) } C_ { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ) | 
						
							| 445 | 423 444 | eqssd |  |-  ( ph -> { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } = { a e. NN | a || ( # ` B ) } ) | 
						
							| 446 | 445 | adantr |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } = { a e. NN | a || ( # ` B ) } ) | 
						
							| 447 | 446 | sumeq1d |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( phi ` k ) = sum_ k e. { a e. NN | a || ( # ` B ) } ( phi ` k ) ) | 
						
							| 448 | 415 447 | breqtrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) < sum_ k e. { a e. NN | a || ( # ` B ) } ( phi ` k ) ) | 
						
							| 449 |  | phisum |  |-  ( ( # ` B ) e. NN -> sum_ k e. { a e. NN | a || ( # ` B ) } ( phi ` k ) = ( # ` B ) ) | 
						
							| 450 | 39 449 | syl |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. { a e. NN | a || ( # ` B ) } ( phi ` k ) = ( # ` B ) ) | 
						
							| 451 | 448 450 | breqtrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> sum_ k e. { a e. ( 1 ... ( # ` B ) ) | a || ( # ` B ) } ( # ` { x e. B | ( ( od ` G ) ` x ) = k } ) < ( # ` B ) ) | 
						
							| 452 | 80 451 | eqbrtrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) < ( # ` B ) ) | 
						
							| 453 | 170 | adantr |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) e. NN0 ) | 
						
							| 454 | 453 | nn0red |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` B ) e. RR ) | 
						
							| 455 | 454 | ltnrd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> -. ( # ` B ) < ( # ` B ) ) | 
						
							| 456 | 452 455 | pm2.21dd |  |-  ( ( ph /\ { x e. B | ( ( od ` G ) ` x ) = D } = (/) ) -> ( # ` { y e. B | ( ( od ` G ) ` y ) = D } ) = ( phi ` D ) ) | 
						
							| 457 | 456 | ex |  |-  ( ph -> ( { x e. B | ( ( od ` G ) ` x ) = D } = (/) -> ( # ` { y e. B | ( ( od ` G ) ` y ) = D } ) = ( phi ` D ) ) ) | 
						
							| 458 | 457 | adantr |  |-  ( ( ph /\ -. { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> ( { x e. B | ( ( od ` G ) ` x ) = D } = (/) -> ( # ` { y e. B | ( ( od ` G ) ` y ) = D } ) = ( phi ` D ) ) ) | 
						
							| 459 | 36 458 | mpd |  |-  ( ( ph /\ -. { x e. B | ( ( od ` G ) ` x ) = D } =/= (/) ) -> ( # ` { y e. B | ( ( od ` G ) ` y ) = D } ) = ( phi ` D ) ) | 
						
							| 460 | 33 459 | pm2.61dan |  |-  ( ph -> ( # ` { y e. B | ( ( od ` G ) ` y ) = D } ) = ( phi ` D ) ) |