Step |
Hyp |
Ref |
Expression |
1 |
|
unitscyglem5.1 |
|- G = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
2 |
|
unitscyglem5.2 |
|- ( ph -> R e. IDomn ) |
3 |
|
unitscyglem5.3 |
|- ( ph -> ( Base ` R ) e. Fin ) |
4 |
|
unitscyglem5.4 |
|- ( ph -> D e. NN ) |
5 |
|
unitscyglem5.5 |
|- ( ph -> D || ( # ` ( Base ` G ) ) ) |
6 |
4
|
phicld |
|- ( ph -> ( phi ` D ) e. NN ) |
7 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
8 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
9 |
2
|
idomringd |
|- ( ph -> R e. Ring ) |
10 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
11 |
10 1
|
unitgrp |
|- ( R e. Ring -> G e. Grp ) |
12 |
9 11
|
syl |
|- ( ph -> G e. Grp ) |
13 |
|
eqid |
|- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
14 |
1 13
|
ressbasss |
|- ( Base ` G ) C_ ( Base ` ( mulGrp ` R ) ) |
15 |
14
|
a1i |
|- ( ph -> ( Base ` G ) C_ ( Base ` ( mulGrp ` R ) ) ) |
16 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
17 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
18 |
16 17
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
19 |
18
|
a1i |
|- ( ph -> ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) ) |
20 |
19
|
eqimsscd |
|- ( ph -> ( Base ` ( mulGrp ` R ) ) C_ ( Base ` R ) ) |
21 |
15 20
|
sstrd |
|- ( ph -> ( Base ` G ) C_ ( Base ` R ) ) |
22 |
3 21
|
ssfid |
|- ( ph -> ( Base ` G ) e. Fin ) |
23 |
18
|
eqcomi |
|- ( Base ` ( mulGrp ` R ) ) = ( Base ` R ) |
24 |
23 10
|
unitss |
|- ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) |
25 |
24
|
a1i |
|- ( ph -> ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ y e. NN ) -> ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) |
27 |
26
|
adantr |
|- ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) |
28 |
1 13
|
ressbasssg |
|- ( Base ` G ) C_ ( ( Unit ` R ) i^i ( Base ` ( mulGrp ` R ) ) ) |
29 |
28
|
a1i |
|- ( ph -> ( Base ` G ) C_ ( ( Unit ` R ) i^i ( Base ` ( mulGrp ` R ) ) ) ) |
30 |
|
inss1 |
|- ( ( Unit ` R ) i^i ( Base ` ( mulGrp ` R ) ) ) C_ ( Unit ` R ) |
31 |
30
|
a1i |
|- ( ph -> ( ( Unit ` R ) i^i ( Base ` ( mulGrp ` R ) ) ) C_ ( Unit ` R ) ) |
32 |
29 31
|
sstrd |
|- ( ph -> ( Base ` G ) C_ ( Unit ` R ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ y e. NN ) -> ( Base ` G ) C_ ( Unit ` R ) ) |
34 |
33
|
sseld |
|- ( ( ph /\ y e. NN ) -> ( z e. ( Base ` G ) -> z e. ( Unit ` R ) ) ) |
35 |
34
|
imp |
|- ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> z e. ( Unit ` R ) ) |
36 |
|
simpr |
|- ( ( ph /\ y e. NN ) -> y e. NN ) |
37 |
36
|
adantr |
|- ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> y e. NN ) |
38 |
1 27 35 37
|
ressmulgnnd |
|- ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> ( y ( .g ` G ) z ) = ( y ( .g ` ( mulGrp ` R ) ) z ) ) |
39 |
38
|
eqeq1d |
|- ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> ( ( y ( .g ` G ) z ) = ( 0g ` G ) <-> ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) |
40 |
39
|
rabbidva |
|- ( ( ph /\ y e. NN ) -> { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } = { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) |
41 |
40
|
fveq2d |
|- ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) = ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) ) |
42 |
|
fvex |
|- ( Base ` G ) e. _V |
43 |
42
|
rabex |
|- { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } e. _V |
44 |
43
|
a1i |
|- ( ( ph /\ y e. NN ) -> { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } e. _V ) |
45 |
|
hashxrcl |
|- ( { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } e. _V -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) e. RR* ) |
46 |
44 45
|
syl |
|- ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) e. RR* ) |
47 |
41 46
|
eqeltrrd |
|- ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) e. RR* ) |
48 |
|
fvex |
|- ( Base ` R ) e. _V |
49 |
48
|
rabex |
|- { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V |
50 |
49
|
a1i |
|- ( ( ph /\ y e. NN ) -> { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V ) |
51 |
|
hashxrcl |
|- ( { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V -> ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) e. RR* ) |
52 |
50 51
|
syl |
|- ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) e. RR* ) |
53 |
|
nnre |
|- ( y e. NN -> y e. RR ) |
54 |
53
|
adantl |
|- ( ( ph /\ y e. NN ) -> y e. RR ) |
55 |
54
|
rexrd |
|- ( ( ph /\ y e. NN ) -> y e. RR* ) |
56 |
|
simprl |
|- ( ( ( ph /\ y e. NN ) /\ ( z e. ( Base ` G ) /\ ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) -> z e. ( Base ` G ) ) |
57 |
21
|
ad2antrr |
|- ( ( ( ph /\ y e. NN ) /\ ( z e. ( Base ` G ) /\ ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) -> ( Base ` G ) C_ ( Base ` R ) ) |
58 |
57
|
sseld |
|- ( ( ( ph /\ y e. NN ) /\ ( z e. ( Base ` G ) /\ ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) -> ( z e. ( Base ` G ) -> z e. ( Base ` R ) ) ) |
59 |
56 58
|
mpd |
|- ( ( ( ph /\ y e. NN ) /\ ( z e. ( Base ` G ) /\ ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) -> z e. ( Base ` R ) ) |
60 |
59
|
rabss3d |
|- ( ( ph /\ y e. NN ) -> { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } C_ { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) |
61 |
50 60
|
jca |
|- ( ( ph /\ y e. NN ) -> ( { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V /\ { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } C_ { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) ) |
62 |
|
hashss |
|- ( ( { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V /\ { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } C_ { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) ) |
63 |
61 62
|
syl |
|- ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) ) |
64 |
2
|
adantr |
|- ( ( ph /\ y e. NN ) -> R e. IDomn ) |
65 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
66 |
10 1 65
|
unitgrpid |
|- ( R e. Ring -> ( 1r ` R ) = ( 0g ` G ) ) |
67 |
9 66
|
syl |
|- ( ph -> ( 1r ` R ) = ( 0g ` G ) ) |
68 |
67
|
eqcomd |
|- ( ph -> ( 0g ` G ) = ( 1r ` R ) ) |
69 |
17 65
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
70 |
9 69
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
71 |
68 70
|
eqeltrd |
|- ( ph -> ( 0g ` G ) e. ( Base ` R ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ y e. NN ) -> ( 0g ` G ) e. ( Base ` R ) ) |
73 |
|
eqid |
|- ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) |
74 |
17 73
|
idomrootle |
|- ( ( R e. IDomn /\ ( 0g ` G ) e. ( Base ` R ) /\ y e. NN ) -> ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ y ) |
75 |
64 72 36 74
|
syl3anc |
|- ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ y ) |
76 |
47 52 55 63 75
|
xrletrd |
|- ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ y ) |
77 |
41 76
|
eqbrtrd |
|- ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) <_ y ) |
78 |
77
|
ralrimiva |
|- ( ph -> A. y e. NN ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) <_ y ) |
79 |
7 8 12 22 78 4 5
|
unitscyglem4 |
|- ( ph -> ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) = ( phi ` D ) ) |
80 |
79
|
eleq1d |
|- ( ph -> ( ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) e. NN <-> ( phi ` D ) e. NN ) ) |
81 |
6 80
|
mpbird |
|- ( ph -> ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) e. NN ) |
82 |
81
|
nngt0d |
|- ( ph -> 0 < ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) ) |
83 |
42
|
rabex |
|- { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } e. _V |
84 |
83
|
a1i |
|- ( ph -> { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } e. _V ) |
85 |
|
hashneq0 |
|- ( { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } e. _V -> ( 0 < ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) <-> { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } =/= (/) ) ) |
86 |
84 85
|
syl |
|- ( ph -> ( 0 < ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) <-> { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } =/= (/) ) ) |
87 |
82 86
|
mpbid |
|- ( ph -> { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } =/= (/) ) |
88 |
|
n0 |
|- ( { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } =/= (/) <-> E. m m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) |
89 |
87 88
|
sylib |
|- ( ph -> E. m m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) |
90 |
|
nfv |
|- F/ m ph |
91 |
|
fveqeq2 |
|- ( w = m -> ( ( ( od ` G ) ` w ) = D <-> ( ( od ` G ) ` m ) = D ) ) |
92 |
91
|
elrab |
|- ( m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } <-> ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) |
93 |
92
|
biimpi |
|- ( m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } -> ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) |
94 |
93
|
adantl |
|- ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) -> ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) |
95 |
|
simpll |
|- ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> ph ) |
96 |
|
simprl |
|- ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> m e. ( Base ` G ) ) |
97 |
|
simprr |
|- ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> ( ( od ` G ) ` m ) = D ) |
98 |
95 96 97
|
jca31 |
|- ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) ) |
99 |
2
|
idomcringd |
|- ( ph -> R e. CRing ) |
100 |
16
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
101 |
99 100
|
syl |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
102 |
101
|
ad2antrr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( mulGrp ` R ) e. CMnd ) |
103 |
4
|
ad2antrr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> D e. NN ) |
104 |
15
|
sselda |
|- ( ( ph /\ m e. ( Base ` G ) ) -> m e. ( Base ` ( mulGrp ` R ) ) ) |
105 |
104
|
adantr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( Base ` ( mulGrp ` R ) ) ) |
106 |
9
|
ad2antrr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> R e. Ring ) |
107 |
10 16
|
unitsubm |
|- ( R e. Ring -> ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
108 |
106 107
|
syl |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
109 |
105 23
|
eleqtrdi |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( Base ` R ) ) |
110 |
102
|
cmnmndd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( mulGrp ` R ) e. Mnd ) |
111 |
4
|
nnzd |
|- ( ph -> D e. ZZ ) |
112 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
113 |
111 112
|
zsubcld |
|- ( ph -> ( D - 1 ) e. ZZ ) |
114 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
115 |
114
|
addridd |
|- ( ph -> ( 1 + 0 ) = 1 ) |
116 |
4
|
nnge1d |
|- ( ph -> 1 <_ D ) |
117 |
115 116
|
eqbrtrd |
|- ( ph -> ( 1 + 0 ) <_ D ) |
118 |
|
1red |
|- ( ph -> 1 e. RR ) |
119 |
|
0red |
|- ( ph -> 0 e. RR ) |
120 |
4
|
nnred |
|- ( ph -> D e. RR ) |
121 |
118 119 120
|
leaddsub2d |
|- ( ph -> ( ( 1 + 0 ) <_ D <-> 0 <_ ( D - 1 ) ) ) |
122 |
117 121
|
mpbid |
|- ( ph -> 0 <_ ( D - 1 ) ) |
123 |
113 122
|
jca |
|- ( ph -> ( ( D - 1 ) e. ZZ /\ 0 <_ ( D - 1 ) ) ) |
124 |
|
elnn0z |
|- ( ( D - 1 ) e. NN0 <-> ( ( D - 1 ) e. ZZ /\ 0 <_ ( D - 1 ) ) ) |
125 |
123 124
|
sylibr |
|- ( ph -> ( D - 1 ) e. NN0 ) |
126 |
125
|
adantr |
|- ( ( ph /\ m e. ( Base ` G ) ) -> ( D - 1 ) e. NN0 ) |
127 |
126
|
adantr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D - 1 ) e. NN0 ) |
128 |
18 73 110 127 109
|
mulgnn0cld |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) e. ( Base ` R ) ) |
129 |
|
simpr |
|- ( ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) /\ o = ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) -> o = ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) |
130 |
129
|
oveq1d |
|- ( ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) /\ o = ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) -> ( o ( .r ` R ) m ) = ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( .r ` R ) m ) ) |
131 |
130
|
eqeq1d |
|- ( ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) /\ o = ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) -> ( ( o ( .r ` R ) m ) = ( 1r ` R ) <-> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( .r ` R ) m ) = ( 1r ` R ) ) ) |
132 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
133 |
16 132
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
134 |
133
|
a1i |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) ) |
135 |
134
|
oveqd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( .r ` R ) m ) = ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) ) |
136 |
103
|
nncnd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> D e. CC ) |
137 |
|
1cnd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> 1 e. CC ) |
138 |
136 137
|
npcand |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( D - 1 ) + 1 ) = D ) |
139 |
138
|
eqcomd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> D = ( ( D - 1 ) + 1 ) ) |
140 |
139
|
oveq1d |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` ( mulGrp ` R ) ) m ) = ( ( ( D - 1 ) + 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) |
141 |
|
eqid |
|- ( +g ` ( mulGrp ` R ) ) = ( +g ` ( mulGrp ` R ) ) |
142 |
13 73 141
|
mulgnn0p1 |
|- ( ( ( mulGrp ` R ) e. Mnd /\ ( D - 1 ) e. NN0 /\ m e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( ( D - 1 ) + 1 ) ( .g ` ( mulGrp ` R ) ) m ) = ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) ) |
143 |
110 127 105 142
|
syl3anc |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) + 1 ) ( .g ` ( mulGrp ` R ) ) m ) = ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) ) |
144 |
140 143
|
eqtr2d |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) = ( D ( .g ` ( mulGrp ` R ) ) m ) ) |
145 |
16 65
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
146 |
145
|
a1i |
|- ( ph -> ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
147 |
146
|
eqcomd |
|- ( ph -> ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) ) |
148 |
10 65
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
149 |
9 148
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Unit ` R ) ) |
150 |
147 149
|
eqeltrd |
|- ( ph -> ( 0g ` ( mulGrp ` R ) ) e. ( Unit ` R ) ) |
151 |
150
|
adantr |
|- ( ( ph /\ m e. ( Base ` G ) ) -> ( 0g ` ( mulGrp ` R ) ) e. ( Unit ` R ) ) |
152 |
151
|
adantr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` ( mulGrp ` R ) ) e. ( Unit ` R ) ) |
153 |
24
|
a1i |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) |
154 |
|
eqid |
|- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
155 |
1 13 154
|
ress0g |
|- ( ( ( mulGrp ` R ) e. Mnd /\ ( 0g ` ( mulGrp ` R ) ) e. ( Unit ` R ) /\ ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) -> ( 0g ` ( mulGrp ` R ) ) = ( 0g ` G ) ) |
156 |
110 152 153 155
|
syl3anc |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` ( mulGrp ` R ) ) = ( 0g ` G ) ) |
157 |
|
simpr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( od ` G ) ` m ) = D ) |
158 |
157
|
eqcomd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> D = ( ( od ` G ) ` m ) ) |
159 |
158
|
oveq1d |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` G ) m ) = ( ( ( od ` G ) ` m ) ( .g ` G ) m ) ) |
160 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
161 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
162 |
7 160 8 161
|
odid |
|- ( m e. ( Base ` G ) -> ( ( ( od ` G ) ` m ) ( .g ` G ) m ) = ( 0g ` G ) ) |
163 |
162
|
ad2antlr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( od ` G ) ` m ) ( .g ` G ) m ) = ( 0g ` G ) ) |
164 |
159 163
|
eqtrd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` G ) m ) = ( 0g ` G ) ) |
165 |
164
|
eqcomd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` G ) = ( D ( .g ` G ) m ) ) |
166 |
156 165
|
eqtrd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` ( mulGrp ` R ) ) = ( D ( .g ` G ) m ) ) |
167 |
32
|
sselda |
|- ( ( ph /\ m e. ( Base ` G ) ) -> m e. ( Unit ` R ) ) |
168 |
167
|
adantr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( Unit ` R ) ) |
169 |
1 153 168 103
|
ressmulgnnd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` G ) m ) = ( D ( .g ` ( mulGrp ` R ) ) m ) ) |
170 |
166 169
|
eqtr2d |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` ( mulGrp ` R ) ) m ) = ( 0g ` ( mulGrp ` R ) ) ) |
171 |
144 170
|
eqtrd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) = ( 0g ` ( mulGrp ` R ) ) ) |
172 |
145
|
a1i |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
173 |
172
|
eqcomd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) ) |
174 |
171 173
|
eqtrd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) = ( 1r ` R ) ) |
175 |
135 174
|
eqtrd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( .r ` R ) m ) = ( 1r ` R ) ) |
176 |
128 131 175
|
rspcedvd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> E. o e. ( Base ` R ) ( o ( .r ` R ) m ) = ( 1r ` R ) ) |
177 |
109 176
|
jca |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( m e. ( Base ` R ) /\ E. o e. ( Base ` R ) ( o ( .r ` R ) m ) = ( 1r ` R ) ) ) |
178 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
179 |
17 178 132
|
dvdsr |
|- ( m ( ||r ` R ) ( 1r ` R ) <-> ( m e. ( Base ` R ) /\ E. o e. ( Base ` R ) ( o ( .r ` R ) m ) = ( 1r ` R ) ) ) |
180 |
177 179
|
sylibr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m ( ||r ` R ) ( 1r ` R ) ) |
181 |
99
|
adantr |
|- ( ( ph /\ m e. ( Base ` G ) ) -> R e. CRing ) |
182 |
181
|
adantr |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> R e. CRing ) |
183 |
10 65 178
|
crngunit |
|- ( R e. CRing -> ( m e. ( Unit ` R ) <-> m ( ||r ` R ) ( 1r ` R ) ) ) |
184 |
182 183
|
syl |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( m e. ( Unit ` R ) <-> m ( ||r ` R ) ( 1r ` R ) ) ) |
185 |
180 184
|
mpbird |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( Unit ` R ) ) |
186 |
|
eqid |
|- ( od ` ( mulGrp ` R ) ) = ( od ` ( mulGrp ` R ) ) |
187 |
1 186 160
|
submod |
|- ( ( ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) /\ m e. ( Unit ` R ) ) -> ( ( od ` ( mulGrp ` R ) ) ` m ) = ( ( od ` G ) ` m ) ) |
188 |
108 185 187
|
syl2anc |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( od ` ( mulGrp ` R ) ) ` m ) = ( ( od ` G ) ` m ) ) |
189 |
188 157
|
eqtrd |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( od ` ( mulGrp ` R ) ) ` m ) = D ) |
190 |
102 103 105 189
|
isprimroot2 |
|- ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( ( mulGrp ` R ) PrimRoots D ) ) |
191 |
98 190
|
syl |
|- ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> m e. ( ( mulGrp ` R ) PrimRoots D ) ) |
192 |
94 191
|
mpdan |
|- ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) -> m e. ( ( mulGrp ` R ) PrimRoots D ) ) |
193 |
192
|
ex |
|- ( ph -> ( m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } -> m e. ( ( mulGrp ` R ) PrimRoots D ) ) ) |
194 |
90 193
|
eximd |
|- ( ph -> ( E. m m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } -> E. m m e. ( ( mulGrp ` R ) PrimRoots D ) ) ) |
195 |
89 194
|
mpd |
|- ( ph -> E. m m e. ( ( mulGrp ` R ) PrimRoots D ) ) |
196 |
|
n0 |
|- ( ( ( mulGrp ` R ) PrimRoots D ) =/= (/) <-> E. m m e. ( ( mulGrp ` R ) PrimRoots D ) ) |
197 |
195 196
|
sylibr |
|- ( ph -> ( ( mulGrp ` R ) PrimRoots D ) =/= (/) ) |