| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitscyglem5.1 |  |-  G = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) | 
						
							| 2 |  | unitscyglem5.2 |  |-  ( ph -> R e. IDomn ) | 
						
							| 3 |  | unitscyglem5.3 |  |-  ( ph -> ( Base ` R ) e. Fin ) | 
						
							| 4 |  | unitscyglem5.4 |  |-  ( ph -> D e. NN ) | 
						
							| 5 |  | unitscyglem5.5 |  |-  ( ph -> D || ( # ` ( Base ` G ) ) ) | 
						
							| 6 | 4 | phicld |  |-  ( ph -> ( phi ` D ) e. NN ) | 
						
							| 7 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 8 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 9 | 2 | idomringd |  |-  ( ph -> R e. Ring ) | 
						
							| 10 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 11 | 10 1 | unitgrp |  |-  ( R e. Ring -> G e. Grp ) | 
						
							| 12 | 9 11 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 14 | 1 13 | ressbasss |  |-  ( Base ` G ) C_ ( Base ` ( mulGrp ` R ) ) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( Base ` G ) C_ ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 16 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 17 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 18 | 16 17 | mgpbas |  |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 19 | 18 | a1i |  |-  ( ph -> ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 20 | 19 | eqimsscd |  |-  ( ph -> ( Base ` ( mulGrp ` R ) ) C_ ( Base ` R ) ) | 
						
							| 21 | 15 20 | sstrd |  |-  ( ph -> ( Base ` G ) C_ ( Base ` R ) ) | 
						
							| 22 | 3 21 | ssfid |  |-  ( ph -> ( Base ` G ) e. Fin ) | 
						
							| 23 | 18 | eqcomi |  |-  ( Base ` ( mulGrp ` R ) ) = ( Base ` R ) | 
						
							| 24 | 23 10 | unitss |  |-  ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) | 
						
							| 25 | 24 | a1i |  |-  ( ph -> ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ y e. NN ) -> ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 28 | 1 13 | ressbasssg |  |-  ( Base ` G ) C_ ( ( Unit ` R ) i^i ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 29 | 28 | a1i |  |-  ( ph -> ( Base ` G ) C_ ( ( Unit ` R ) i^i ( Base ` ( mulGrp ` R ) ) ) ) | 
						
							| 30 |  | inss1 |  |-  ( ( Unit ` R ) i^i ( Base ` ( mulGrp ` R ) ) ) C_ ( Unit ` R ) | 
						
							| 31 | 30 | a1i |  |-  ( ph -> ( ( Unit ` R ) i^i ( Base ` ( mulGrp ` R ) ) ) C_ ( Unit ` R ) ) | 
						
							| 32 | 29 31 | sstrd |  |-  ( ph -> ( Base ` G ) C_ ( Unit ` R ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ y e. NN ) -> ( Base ` G ) C_ ( Unit ` R ) ) | 
						
							| 34 | 33 | sseld |  |-  ( ( ph /\ y e. NN ) -> ( z e. ( Base ` G ) -> z e. ( Unit ` R ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> z e. ( Unit ` R ) ) | 
						
							| 36 |  | simpr |  |-  ( ( ph /\ y e. NN ) -> y e. NN ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> y e. NN ) | 
						
							| 38 | 1 27 35 37 | ressmulgnnd |  |-  ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> ( y ( .g ` G ) z ) = ( y ( .g ` ( mulGrp ` R ) ) z ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( ( ( ph /\ y e. NN ) /\ z e. ( Base ` G ) ) -> ( ( y ( .g ` G ) z ) = ( 0g ` G ) <-> ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) | 
						
							| 40 | 39 | rabbidva |  |-  ( ( ph /\ y e. NN ) -> { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } = { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) = ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) ) | 
						
							| 42 |  | fvex |  |-  ( Base ` G ) e. _V | 
						
							| 43 | 42 | rabex |  |-  { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } e. _V | 
						
							| 44 | 43 | a1i |  |-  ( ( ph /\ y e. NN ) -> { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } e. _V ) | 
						
							| 45 |  | hashxrcl |  |-  ( { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } e. _V -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) e. RR* ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) e. RR* ) | 
						
							| 47 | 41 46 | eqeltrrd |  |-  ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) e. RR* ) | 
						
							| 48 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 49 | 48 | rabex |  |-  { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V | 
						
							| 50 | 49 | a1i |  |-  ( ( ph /\ y e. NN ) -> { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V ) | 
						
							| 51 |  | hashxrcl |  |-  ( { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V -> ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) e. RR* ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) e. RR* ) | 
						
							| 53 |  | nnre |  |-  ( y e. NN -> y e. RR ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ph /\ y e. NN ) -> y e. RR ) | 
						
							| 55 | 54 | rexrd |  |-  ( ( ph /\ y e. NN ) -> y e. RR* ) | 
						
							| 56 |  | simprl |  |-  ( ( ( ph /\ y e. NN ) /\ ( z e. ( Base ` G ) /\ ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) -> z e. ( Base ` G ) ) | 
						
							| 57 | 21 | ad2antrr |  |-  ( ( ( ph /\ y e. NN ) /\ ( z e. ( Base ` G ) /\ ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) -> ( Base ` G ) C_ ( Base ` R ) ) | 
						
							| 58 | 57 | sseld |  |-  ( ( ( ph /\ y e. NN ) /\ ( z e. ( Base ` G ) /\ ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) -> ( z e. ( Base ` G ) -> z e. ( Base ` R ) ) ) | 
						
							| 59 | 56 58 | mpd |  |-  ( ( ( ph /\ y e. NN ) /\ ( z e. ( Base ` G ) /\ ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) ) ) -> z e. ( Base ` R ) ) | 
						
							| 60 | 59 | rabss3d |  |-  ( ( ph /\ y e. NN ) -> { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } C_ { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) | 
						
							| 61 | 50 60 | jca |  |-  ( ( ph /\ y e. NN ) -> ( { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V /\ { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } C_ { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) ) | 
						
							| 62 |  | hashss |  |-  ( ( { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } e. _V /\ { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } C_ { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) ) | 
						
							| 64 | 2 | adantr |  |-  ( ( ph /\ y e. NN ) -> R e. IDomn ) | 
						
							| 65 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 66 | 10 1 65 | unitgrpid |  |-  ( R e. Ring -> ( 1r ` R ) = ( 0g ` G ) ) | 
						
							| 67 | 9 66 | syl |  |-  ( ph -> ( 1r ` R ) = ( 0g ` G ) ) | 
						
							| 68 | 67 | eqcomd |  |-  ( ph -> ( 0g ` G ) = ( 1r ` R ) ) | 
						
							| 69 | 17 65 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 70 | 9 69 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 71 | 68 70 | eqeltrd |  |-  ( ph -> ( 0g ` G ) e. ( Base ` R ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ y e. NN ) -> ( 0g ` G ) e. ( Base ` R ) ) | 
						
							| 73 |  | eqid |  |-  ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) | 
						
							| 74 | 17 73 | idomrootle |  |-  ( ( R e. IDomn /\ ( 0g ` G ) e. ( Base ` R ) /\ y e. NN ) -> ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ y ) | 
						
							| 75 | 64 72 36 74 | syl3anc |  |-  ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` R ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ y ) | 
						
							| 76 | 47 52 55 63 75 | xrletrd |  |-  ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` ( mulGrp ` R ) ) z ) = ( 0g ` G ) } ) <_ y ) | 
						
							| 77 | 41 76 | eqbrtrd |  |-  ( ( ph /\ y e. NN ) -> ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) <_ y ) | 
						
							| 78 | 77 | ralrimiva |  |-  ( ph -> A. y e. NN ( # ` { z e. ( Base ` G ) | ( y ( .g ` G ) z ) = ( 0g ` G ) } ) <_ y ) | 
						
							| 79 | 7 8 12 22 78 4 5 | unitscyglem4 |  |-  ( ph -> ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) = ( phi ` D ) ) | 
						
							| 80 | 79 | eleq1d |  |-  ( ph -> ( ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) e. NN <-> ( phi ` D ) e. NN ) ) | 
						
							| 81 | 6 80 | mpbird |  |-  ( ph -> ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) e. NN ) | 
						
							| 82 | 81 | nngt0d |  |-  ( ph -> 0 < ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) ) | 
						
							| 83 | 42 | rabex |  |-  { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } e. _V | 
						
							| 84 | 83 | a1i |  |-  ( ph -> { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } e. _V ) | 
						
							| 85 |  | hashneq0 |  |-  ( { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } e. _V -> ( 0 < ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) <-> { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } =/= (/) ) ) | 
						
							| 86 | 84 85 | syl |  |-  ( ph -> ( 0 < ( # ` { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) <-> { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } =/= (/) ) ) | 
						
							| 87 | 82 86 | mpbid |  |-  ( ph -> { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } =/= (/) ) | 
						
							| 88 |  | n0 |  |-  ( { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } =/= (/) <-> E. m m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) | 
						
							| 89 | 87 88 | sylib |  |-  ( ph -> E. m m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) | 
						
							| 90 |  | nfv |  |-  F/ m ph | 
						
							| 91 |  | fveqeq2 |  |-  ( w = m -> ( ( ( od ` G ) ` w ) = D <-> ( ( od ` G ) ` m ) = D ) ) | 
						
							| 92 | 91 | elrab |  |-  ( m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } <-> ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) | 
						
							| 93 | 92 | biimpi |  |-  ( m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } -> ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) | 
						
							| 94 | 93 | adantl |  |-  ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) -> ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) | 
						
							| 95 |  | simpll |  |-  ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> ph ) | 
						
							| 96 |  | simprl |  |-  ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> m e. ( Base ` G ) ) | 
						
							| 97 |  | simprr |  |-  ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> ( ( od ` G ) ` m ) = D ) | 
						
							| 98 | 95 96 97 | jca31 |  |-  ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) ) | 
						
							| 99 | 2 | idomcringd |  |-  ( ph -> R e. CRing ) | 
						
							| 100 | 16 | crngmgp |  |-  ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) | 
						
							| 101 | 99 100 | syl |  |-  ( ph -> ( mulGrp ` R ) e. CMnd ) | 
						
							| 102 | 101 | ad2antrr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( mulGrp ` R ) e. CMnd ) | 
						
							| 103 | 4 | ad2antrr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> D e. NN ) | 
						
							| 104 | 15 | sselda |  |-  ( ( ph /\ m e. ( Base ` G ) ) -> m e. ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 106 | 9 | ad2antrr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> R e. Ring ) | 
						
							| 107 | 10 16 | unitsubm |  |-  ( R e. Ring -> ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 108 | 106 107 | syl |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 109 | 105 23 | eleqtrdi |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( Base ` R ) ) | 
						
							| 110 | 102 | cmnmndd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 111 | 4 | nnzd |  |-  ( ph -> D e. ZZ ) | 
						
							| 112 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 113 | 111 112 | zsubcld |  |-  ( ph -> ( D - 1 ) e. ZZ ) | 
						
							| 114 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 115 | 114 | addridd |  |-  ( ph -> ( 1 + 0 ) = 1 ) | 
						
							| 116 | 4 | nnge1d |  |-  ( ph -> 1 <_ D ) | 
						
							| 117 | 115 116 | eqbrtrd |  |-  ( ph -> ( 1 + 0 ) <_ D ) | 
						
							| 118 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 119 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 120 | 4 | nnred |  |-  ( ph -> D e. RR ) | 
						
							| 121 | 118 119 120 | leaddsub2d |  |-  ( ph -> ( ( 1 + 0 ) <_ D <-> 0 <_ ( D - 1 ) ) ) | 
						
							| 122 | 117 121 | mpbid |  |-  ( ph -> 0 <_ ( D - 1 ) ) | 
						
							| 123 | 113 122 | jca |  |-  ( ph -> ( ( D - 1 ) e. ZZ /\ 0 <_ ( D - 1 ) ) ) | 
						
							| 124 |  | elnn0z |  |-  ( ( D - 1 ) e. NN0 <-> ( ( D - 1 ) e. ZZ /\ 0 <_ ( D - 1 ) ) ) | 
						
							| 125 | 123 124 | sylibr |  |-  ( ph -> ( D - 1 ) e. NN0 ) | 
						
							| 126 | 125 | adantr |  |-  ( ( ph /\ m e. ( Base ` G ) ) -> ( D - 1 ) e. NN0 ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D - 1 ) e. NN0 ) | 
						
							| 128 | 18 73 110 127 109 | mulgnn0cld |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) e. ( Base ` R ) ) | 
						
							| 129 |  | simpr |  |-  ( ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) /\ o = ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) -> o = ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) | 
						
							| 130 | 129 | oveq1d |  |-  ( ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) /\ o = ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) -> ( o ( .r ` R ) m ) = ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( .r ` R ) m ) ) | 
						
							| 131 | 130 | eqeq1d |  |-  ( ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) /\ o = ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) -> ( ( o ( .r ` R ) m ) = ( 1r ` R ) <-> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( .r ` R ) m ) = ( 1r ` R ) ) ) | 
						
							| 132 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 133 | 16 132 | mgpplusg |  |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 134 | 133 | a1i |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) ) | 
						
							| 135 | 134 | oveqd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( .r ` R ) m ) = ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) ) | 
						
							| 136 | 103 | nncnd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> D e. CC ) | 
						
							| 137 |  | 1cnd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> 1 e. CC ) | 
						
							| 138 | 136 137 | npcand |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( D - 1 ) + 1 ) = D ) | 
						
							| 139 | 138 | eqcomd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> D = ( ( D - 1 ) + 1 ) ) | 
						
							| 140 | 139 | oveq1d |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` ( mulGrp ` R ) ) m ) = ( ( ( D - 1 ) + 1 ) ( .g ` ( mulGrp ` R ) ) m ) ) | 
						
							| 141 |  | eqid |  |-  ( +g ` ( mulGrp ` R ) ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 142 | 13 73 141 | mulgnn0p1 |  |-  ( ( ( mulGrp ` R ) e. Mnd /\ ( D - 1 ) e. NN0 /\ m e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( ( D - 1 ) + 1 ) ( .g ` ( mulGrp ` R ) ) m ) = ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) ) | 
						
							| 143 | 110 127 105 142 | syl3anc |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) + 1 ) ( .g ` ( mulGrp ` R ) ) m ) = ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) ) | 
						
							| 144 | 140 143 | eqtr2d |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) = ( D ( .g ` ( mulGrp ` R ) ) m ) ) | 
						
							| 145 | 16 65 | ringidval |  |-  ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 146 | 145 | a1i |  |-  ( ph -> ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) ) | 
						
							| 147 | 146 | eqcomd |  |-  ( ph -> ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) ) | 
						
							| 148 | 10 65 | 1unit |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) | 
						
							| 149 | 9 148 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Unit ` R ) ) | 
						
							| 150 | 147 149 | eqeltrd |  |-  ( ph -> ( 0g ` ( mulGrp ` R ) ) e. ( Unit ` R ) ) | 
						
							| 151 | 150 | adantr |  |-  ( ( ph /\ m e. ( Base ` G ) ) -> ( 0g ` ( mulGrp ` R ) ) e. ( Unit ` R ) ) | 
						
							| 152 | 151 | adantr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` ( mulGrp ` R ) ) e. ( Unit ` R ) ) | 
						
							| 153 | 24 | a1i |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 154 |  | eqid |  |-  ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 155 | 1 13 154 | ress0g |  |-  ( ( ( mulGrp ` R ) e. Mnd /\ ( 0g ` ( mulGrp ` R ) ) e. ( Unit ` R ) /\ ( Unit ` R ) C_ ( Base ` ( mulGrp ` R ) ) ) -> ( 0g ` ( mulGrp ` R ) ) = ( 0g ` G ) ) | 
						
							| 156 | 110 152 153 155 | syl3anc |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` ( mulGrp ` R ) ) = ( 0g ` G ) ) | 
						
							| 157 |  | simpr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( od ` G ) ` m ) = D ) | 
						
							| 158 | 157 | eqcomd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> D = ( ( od ` G ) ` m ) ) | 
						
							| 159 | 158 | oveq1d |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` G ) m ) = ( ( ( od ` G ) ` m ) ( .g ` G ) m ) ) | 
						
							| 160 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 161 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 162 | 7 160 8 161 | odid |  |-  ( m e. ( Base ` G ) -> ( ( ( od ` G ) ` m ) ( .g ` G ) m ) = ( 0g ` G ) ) | 
						
							| 163 | 162 | ad2antlr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( od ` G ) ` m ) ( .g ` G ) m ) = ( 0g ` G ) ) | 
						
							| 164 | 159 163 | eqtrd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` G ) m ) = ( 0g ` G ) ) | 
						
							| 165 | 164 | eqcomd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` G ) = ( D ( .g ` G ) m ) ) | 
						
							| 166 | 156 165 | eqtrd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` ( mulGrp ` R ) ) = ( D ( .g ` G ) m ) ) | 
						
							| 167 | 32 | sselda |  |-  ( ( ph /\ m e. ( Base ` G ) ) -> m e. ( Unit ` R ) ) | 
						
							| 168 | 167 | adantr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( Unit ` R ) ) | 
						
							| 169 | 1 153 168 103 | ressmulgnnd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` G ) m ) = ( D ( .g ` ( mulGrp ` R ) ) m ) ) | 
						
							| 170 | 166 169 | eqtr2d |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( D ( .g ` ( mulGrp ` R ) ) m ) = ( 0g ` ( mulGrp ` R ) ) ) | 
						
							| 171 | 144 170 | eqtrd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) = ( 0g ` ( mulGrp ` R ) ) ) | 
						
							| 172 | 145 | a1i |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) ) | 
						
							| 173 | 172 | eqcomd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) ) | 
						
							| 174 | 171 173 | eqtrd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( +g ` ( mulGrp ` R ) ) m ) = ( 1r ` R ) ) | 
						
							| 175 | 135 174 | eqtrd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( ( D - 1 ) ( .g ` ( mulGrp ` R ) ) m ) ( .r ` R ) m ) = ( 1r ` R ) ) | 
						
							| 176 | 128 131 175 | rspcedvd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> E. o e. ( Base ` R ) ( o ( .r ` R ) m ) = ( 1r ` R ) ) | 
						
							| 177 | 109 176 | jca |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( m e. ( Base ` R ) /\ E. o e. ( Base ` R ) ( o ( .r ` R ) m ) = ( 1r ` R ) ) ) | 
						
							| 178 |  | eqid |  |-  ( ||r ` R ) = ( ||r ` R ) | 
						
							| 179 | 17 178 132 | dvdsr |  |-  ( m ( ||r ` R ) ( 1r ` R ) <-> ( m e. ( Base ` R ) /\ E. o e. ( Base ` R ) ( o ( .r ` R ) m ) = ( 1r ` R ) ) ) | 
						
							| 180 | 177 179 | sylibr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m ( ||r ` R ) ( 1r ` R ) ) | 
						
							| 181 | 99 | adantr |  |-  ( ( ph /\ m e. ( Base ` G ) ) -> R e. CRing ) | 
						
							| 182 | 181 | adantr |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> R e. CRing ) | 
						
							| 183 | 10 65 178 | crngunit |  |-  ( R e. CRing -> ( m e. ( Unit ` R ) <-> m ( ||r ` R ) ( 1r ` R ) ) ) | 
						
							| 184 | 182 183 | syl |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( m e. ( Unit ` R ) <-> m ( ||r ` R ) ( 1r ` R ) ) ) | 
						
							| 185 | 180 184 | mpbird |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( Unit ` R ) ) | 
						
							| 186 |  | eqid |  |-  ( od ` ( mulGrp ` R ) ) = ( od ` ( mulGrp ` R ) ) | 
						
							| 187 | 1 186 160 | submod |  |-  ( ( ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) /\ m e. ( Unit ` R ) ) -> ( ( od ` ( mulGrp ` R ) ) ` m ) = ( ( od ` G ) ` m ) ) | 
						
							| 188 | 108 185 187 | syl2anc |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( od ` ( mulGrp ` R ) ) ` m ) = ( ( od ` G ) ` m ) ) | 
						
							| 189 | 188 157 | eqtrd |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> ( ( od ` ( mulGrp ` R ) ) ` m ) = D ) | 
						
							| 190 | 102 103 105 189 | isprimroot2 |  |-  ( ( ( ph /\ m e. ( Base ` G ) ) /\ ( ( od ` G ) ` m ) = D ) -> m e. ( ( mulGrp ` R ) PrimRoots D ) ) | 
						
							| 191 | 98 190 | syl |  |-  ( ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) /\ ( m e. ( Base ` G ) /\ ( ( od ` G ) ` m ) = D ) ) -> m e. ( ( mulGrp ` R ) PrimRoots D ) ) | 
						
							| 192 | 94 191 | mpdan |  |-  ( ( ph /\ m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } ) -> m e. ( ( mulGrp ` R ) PrimRoots D ) ) | 
						
							| 193 | 192 | ex |  |-  ( ph -> ( m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } -> m e. ( ( mulGrp ` R ) PrimRoots D ) ) ) | 
						
							| 194 | 90 193 | eximd |  |-  ( ph -> ( E. m m e. { w e. ( Base ` G ) | ( ( od ` G ) ` w ) = D } -> E. m m e. ( ( mulGrp ` R ) PrimRoots D ) ) ) | 
						
							| 195 | 89 194 | mpd |  |-  ( ph -> E. m m e. ( ( mulGrp ` R ) PrimRoots D ) ) | 
						
							| 196 |  | n0 |  |-  ( ( ( mulGrp ` R ) PrimRoots D ) =/= (/) <-> E. m m e. ( ( mulGrp ` R ) PrimRoots D ) ) | 
						
							| 197 | 195 196 | sylibr |  |-  ( ph -> ( ( mulGrp ` R ) PrimRoots D ) =/= (/) ) |