Metamath Proof Explorer


Theorem oddvds2

Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses odcl2.1 X=BaseG
odcl2.2 O=odG
Assertion oddvds2 GGrpXFinAXOAX

Proof

Step Hyp Ref Expression
1 odcl2.1 X=BaseG
2 odcl2.2 O=odG
3 eqid G=G
4 eqid xxGA=xxGA
5 1 2 3 4 dfod2 GGrpAXOA=ifranxxGAFinranxxGA0
6 5 3adant2 GGrpXFinAXOA=ifranxxGAFinranxxGA0
7 simp2 GGrpXFinAXXFin
8 1 3 4 cycsubgcl GGrpAXranxxGASubGrpGAranxxGA
9 8 3adant2 GGrpXFinAXranxxGASubGrpGAranxxGA
10 9 simpld GGrpXFinAXranxxGASubGrpG
11 1 subgss ranxxGASubGrpGranxxGAX
12 10 11 syl GGrpXFinAXranxxGAX
13 7 12 ssfid GGrpXFinAXranxxGAFin
14 13 iftrued GGrpXFinAXifranxxGAFinranxxGA0=ranxxGA
15 6 14 eqtrd GGrpXFinAXOA=ranxxGA
16 1 lagsubg ranxxGASubGrpGXFinranxxGAX
17 10 7 16 syl2anc GGrpXFinAXranxxGAX
18 15 17 eqbrtrd GGrpXFinAXOAX