Metamath Proof Explorer


Theorem odmulg

Description: Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odmulgid.1 X=BaseG
odmulgid.2 O=odG
odmulgid.3 ·˙=G
Assertion odmulg GGrpAXNOA=NgcdOAON·˙A

Proof

Step Hyp Ref Expression
1 odmulgid.1 X=BaseG
2 odmulgid.2 O=odG
3 odmulgid.3 ·˙=G
4 1 3 mulgcl GGrpNAXN·˙AX
5 4 3com23 GGrpAXNN·˙AX
6 1 2 odcl N·˙AXON·˙A0
7 5 6 syl GGrpAXNON·˙A0
8 7 nn0cnd GGrpAXNON·˙A
9 8 adantr GGrpAXNNgcdOA=0ON·˙A
10 9 mul02d GGrpAXNNgcdOA=00ON·˙A=0
11 simpr GGrpAXNNgcdOA=0NgcdOA=0
12 11 oveq1d GGrpAXNNgcdOA=0NgcdOAON·˙A=0ON·˙A
13 simp3 GGrpAXNN
14 1 2 odcl AXOA0
15 14 3ad2ant2 GGrpAXNOA0
16 15 nn0zd GGrpAXNOA
17 gcdeq0 NOANgcdOA=0N=0OA=0
18 13 16 17 syl2anc GGrpAXNNgcdOA=0N=0OA=0
19 18 simplbda GGrpAXNNgcdOA=0OA=0
20 10 12 19 3eqtr4rd GGrpAXNNgcdOA=0OA=NgcdOAON·˙A
21 simpll3 GGrpAXNNgcdOA0x0N
22 16 ad2antrr GGrpAXNNgcdOA0x0OA
23 gcddvds NOANgcdOANNgcdOAOA
24 21 22 23 syl2anc GGrpAXNNgcdOA0x0NgcdOANNgcdOAOA
25 24 simprd GGrpAXNNgcdOA0x0NgcdOAOA
26 13 16 gcdcld GGrpAXNNgcdOA0
27 26 adantr GGrpAXNNgcdOA0NgcdOA0
28 27 nn0zd GGrpAXNNgcdOA0NgcdOA
29 28 adantr GGrpAXNNgcdOA0x0NgcdOA
30 nn0z x0x
31 30 adantl GGrpAXNNgcdOA0x0x
32 dvdstr NgcdOAOAxNgcdOAOAOAxNgcdOAx
33 29 22 31 32 syl3anc GGrpAXNNgcdOA0x0NgcdOAOAOAxNgcdOAx
34 25 33 mpand GGrpAXNNgcdOA0x0OAxNgcdOAx
35 7 nn0zd GGrpAXNON·˙A
36 35 ad2antrr GGrpAXNNgcdOA0x0ON·˙A
37 muldvds1 NgcdOAON·˙AxNgcdOAON·˙AxNgcdOAx
38 29 36 31 37 syl3anc GGrpAXNNgcdOA0x0NgcdOAON·˙AxNgcdOAx
39 dvdszrcl NgcdOAxNgcdOAx
40 divides NgcdOAxNgcdOAxyyNgcdOA=x
41 39 40 syl NgcdOAxNgcdOAxyyNgcdOA=x
42 41 ibi NgcdOAxyyNgcdOA=x
43 35 adantr GGrpAXNNgcdOA0yON·˙A
44 simprr GGrpAXNNgcdOA0yy
45 28 adantrr GGrpAXNNgcdOA0yNgcdOA
46 simprl GGrpAXNNgcdOA0yNgcdOA0
47 dvdscmulr ON·˙AyNgcdOANgcdOA0NgcdOAON·˙ANgcdOAyON·˙Ay
48 43 44 45 46 47 syl112anc GGrpAXNNgcdOA0yNgcdOAON·˙ANgcdOAyON·˙Ay
49 1 2 3 odmulgid GGrpAXNyON·˙AyOAy N
50 49 adantrl GGrpAXNNgcdOA0yON·˙AyOAy N
51 simpl3 GGrpAXNNgcdOA0yN
52 dvdsmulgcd yNOAy NOAyNgcdOA
53 44 51 52 syl2anc GGrpAXNNgcdOA0yOAy NOAyNgcdOA
54 48 50 53 3bitrrd GGrpAXNNgcdOA0yOAyNgcdOANgcdOAON·˙ANgcdOAy
55 45 zcnd GGrpAXNNgcdOA0yNgcdOA
56 44 zcnd GGrpAXNNgcdOA0yy
57 55 56 mulcomd GGrpAXNNgcdOA0yNgcdOAy=yNgcdOA
58 57 breq2d GGrpAXNNgcdOA0yNgcdOAON·˙ANgcdOAyNgcdOAON·˙AyNgcdOA
59 54 58 bitrd GGrpAXNNgcdOA0yOAyNgcdOANgcdOAON·˙AyNgcdOA
60 59 anassrs GGrpAXNNgcdOA0yOAyNgcdOANgcdOAON·˙AyNgcdOA
61 breq2 yNgcdOA=xOAyNgcdOAOAx
62 breq2 yNgcdOA=xNgcdOAON·˙AyNgcdOANgcdOAON·˙Ax
63 61 62 bibi12d yNgcdOA=xOAyNgcdOANgcdOAON·˙AyNgcdOAOAxNgcdOAON·˙Ax
64 60 63 syl5ibcom GGrpAXNNgcdOA0yyNgcdOA=xOAxNgcdOAON·˙Ax
65 64 rexlimdva GGrpAXNNgcdOA0yyNgcdOA=xOAxNgcdOAON·˙Ax
66 42 65 syl5 GGrpAXNNgcdOA0NgcdOAxOAxNgcdOAON·˙Ax
67 66 adantr GGrpAXNNgcdOA0x0NgcdOAxOAxNgcdOAON·˙Ax
68 34 38 67 pm5.21ndd GGrpAXNNgcdOA0x0OAxNgcdOAON·˙Ax
69 68 ralrimiva GGrpAXNNgcdOA0x0OAxNgcdOAON·˙Ax
70 15 adantr GGrpAXNNgcdOA0OA0
71 7 adantr GGrpAXNNgcdOA0ON·˙A0
72 27 71 nn0mulcld GGrpAXNNgcdOA0NgcdOAON·˙A0
73 dvdsext OA0NgcdOAON·˙A0OA=NgcdOAON·˙Ax0OAxNgcdOAON·˙Ax
74 70 72 73 syl2anc GGrpAXNNgcdOA0OA=NgcdOAON·˙Ax0OAxNgcdOAON·˙Ax
75 69 74 mpbird GGrpAXNNgcdOA0OA=NgcdOAON·˙A
76 20 75 pm2.61dane GGrpAXNOA=NgcdOAON·˙A