Step |
Hyp |
Ref |
Expression |
1 |
|
grpods.1 |
|
2 |
|
grpods.2 |
|
3 |
|
grpods.3 |
|
4 |
|
grpods.4 |
|
5 |
|
grpods.5 |
|
6 |
|
oveq2 |
|
7 |
6
|
eqeq1d |
|
8 |
7
|
elrab |
|
9 |
8
|
biimpi |
|
10 |
9
|
adantl |
|
11 |
|
simpl |
|
12 |
|
simprl |
|
13 |
11 12
|
jca |
|
14 |
|
simprr |
|
15 |
11 3
|
syl |
|
16 |
|
grpmnd |
|
17 |
15 16
|
syl |
|
18 |
11 5
|
syl |
|
19 |
18
|
nnnn0d |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
1 20 2 21
|
oddvdsnn0 |
|
23 |
17 12 19 22
|
syl3anc |
|
24 |
14 23
|
mpbird |
|
25 |
13 24
|
jca |
|
26 |
|
breq1 |
|
27 |
|
1zzd |
|
28 |
5
|
ad2antrr |
|
29 |
28
|
nnzd |
|
30 |
|
dvdszrcl |
|
31 |
30
|
simpld |
|
32 |
31
|
adantl |
|
33 |
3
|
ad2antrr |
|
34 |
4
|
ad2antrr |
|
35 |
|
simplr |
|
36 |
1 20
|
odcl2 |
|
37 |
33 34 35 36
|
syl3anc |
|
38 |
37
|
nnge1d |
|
39 |
32 28
|
jca |
|
40 |
|
simpr |
|
41 |
|
dvdsle |
|
42 |
41
|
imp |
|
43 |
39 40 42
|
syl2anc |
|
44 |
27 29 32 38 43
|
elfzd |
|
45 |
26 44 40
|
elrabd |
|
46 |
|
fveqeq2 |
|
47 |
|
eqidd |
|
48 |
46 35 47
|
elrabd |
|
49 |
|
eqeq2 |
|
50 |
49
|
rabbidv |
|
51 |
50
|
eliuni |
|
52 |
45 48 51
|
syl2anc |
|
53 |
25 52
|
syl |
|
54 |
53
|
ex |
|
55 |
54
|
adantr |
|
56 |
10 55
|
mpd |
|
57 |
56
|
ex |
|
58 |
|
eliun |
|
59 |
58
|
biimpi |
|
60 |
59
|
adantl |
|
61 |
|
simplll |
|
62 |
|
simplr |
|
63 |
61 62
|
jca |
|
64 |
|
simpr |
|
65 |
63 64
|
jca |
|
66 |
|
elrabi |
|
67 |
66
|
adantl |
|
68 |
|
simpll |
|
69 |
|
breq1 |
|
70 |
69
|
elrab |
|
71 |
70
|
biimpi |
|
72 |
71
|
adantl |
|
73 |
72
|
adantr |
|
74 |
68 73
|
jca |
|
75 |
|
fveqeq2 |
|
76 |
75
|
elrab |
|
77 |
76
|
biimpi |
|
78 |
77
|
adantl |
|
79 |
74 78
|
jca |
|
80 |
|
simpll |
|
81 |
|
simprr |
|
82 |
|
elfzelz |
|
83 |
82
|
adantr |
|
84 |
83
|
adantl |
|
85 |
5
|
adantr |
|
86 |
85
|
nnzd |
|
87 |
|
divides |
|
88 |
84 86 87
|
syl2anc |
|
89 |
81 88
|
mpbid |
|
90 |
89
|
adantr |
|
91 |
80 90
|
jca |
|
92 |
|
simpr |
|
93 |
91 92
|
jca |
|
94 |
|
oveq1 |
|
95 |
94
|
eqcomd |
|
96 |
95
|
adantl |
|
97 |
|
simplrr |
|
98 |
97
|
oveq2d |
|
99 |
98
|
eqcomd |
|
100 |
99
|
oveq1d |
|
101 |
|
simplll |
|
102 |
|
simplrl |
|
103 |
101 102
|
jca |
|
104 |
|
simpr |
|
105 |
103 104
|
jca |
|
106 |
3
|
ad2antrr |
|
107 |
|
simpr |
|
108 |
1 20
|
odcl |
|
109 |
108
|
ad2antlr |
|
110 |
109
|
nn0zd |
|
111 |
|
simplr |
|
112 |
107 110 111
|
3jca |
|
113 |
1 2
|
mulgass |
|
114 |
106 112 113
|
syl2anc |
|
115 |
1 20 2 21
|
odid |
|
116 |
111 115
|
syl |
|
117 |
116
|
oveq2d |
|
118 |
1 2 21
|
mulgz |
|
119 |
106 107 118
|
syl2anc |
|
120 |
117 119
|
eqtrd |
|
121 |
114 120
|
eqtrd |
|
122 |
105 121
|
syl |
|
123 |
100 122
|
eqtrd |
|
124 |
123
|
adantr |
|
125 |
96 124
|
eqtrd |
|
126 |
|
nfv |
|
127 |
|
nfv |
|
128 |
|
oveq1 |
|
129 |
128
|
eqeq1d |
|
130 |
126 127 129
|
cbvrexw |
|
131 |
130
|
biimpi |
|
132 |
131
|
adantl |
|
133 |
132
|
adantr |
|
134 |
125 133
|
r19.29a |
|
135 |
93 134
|
syl |
|
136 |
79 135
|
syl |
|
137 |
7 67 136
|
elrabd |
|
138 |
65 137
|
syl |
|
139 |
|
nfv |
|
140 |
|
nfv |
|
141 |
|
eqeq2 |
|
142 |
141
|
rabbidv |
|
143 |
142
|
eleq2d |
|
144 |
139 140 143
|
cbvrexw |
|
145 |
144
|
biimpi |
|
146 |
145
|
adantl |
|
147 |
138 146
|
r19.29a |
|
148 |
147
|
ex |
|
149 |
148
|
adantr |
|
150 |
60 149
|
mpd |
|
151 |
150
|
ex |
|
152 |
57 151
|
impbid |
|
153 |
152
|
eqrdv |
|
154 |
153
|
fveq2d |
|
155 |
|
fzfid |
|
156 |
|
ssrab2 |
|
157 |
156
|
a1i |
|
158 |
155 157
|
ssfid |
|
159 |
4
|
adantr |
|
160 |
|
ssrab2 |
|
161 |
160
|
a1i |
|
162 |
159 161
|
ssfid |
|
163 |
|
animorrl |
|
164 |
|
inrab |
|
165 |
164
|
a1i |
|
166 |
|
rabn0 |
|
167 |
166
|
biimpi |
|
168 |
|
eqtr2 |
|
169 |
168
|
adantl |
|
170 |
|
nfv |
|
171 |
|
nfv |
|
172 |
|
fveqeq2 |
|
173 |
|
fveqeq2 |
|
174 |
172 173
|
anbi12d |
|
175 |
170 171 174
|
cbvrexw |
|
176 |
175
|
biimpi |
|
177 |
169 176
|
r19.29a |
|
178 |
167 177
|
syl |
|
179 |
178
|
necon1bi |
|
180 |
165 179
|
eqtrd |
|
181 |
180
|
adantl |
|
182 |
181
|
olcd |
|
183 |
163 182
|
pm2.61dan |
|
184 |
183
|
ralrimiva |
|
185 |
184
|
ralrimiva |
|
186 |
|
eqeq2 |
|
187 |
186
|
rabbidv |
|
188 |
187
|
disjor |
|
189 |
185 188
|
sylibr |
|
190 |
158 162 189
|
hashiun |
|
191 |
154 190
|
eqtr2d |
|