Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl2.1 | |
|
odcl2.2 | |
||
Assertion | odcl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl2.1 | |
|
2 | odcl2.2 | |
|
3 | 1 2 | odcl | |
4 | 3 | adantl | |
5 | elnn0 | |
|
6 | 4 5 | sylib | |
7 | 6 | ord | |
8 | eqid | |
|
9 | eqid | |
|
10 | 1 2 8 9 | odinf | |
11 | 1 2 8 9 | odf1 | |
12 | 11 | biimp3a | |
13 | f1f | |
|
14 | frn | |
|
15 | ssfi | |
|
16 | 15 | expcom | |
17 | 12 13 14 16 | 4syl | |
18 | 10 17 | mtod | |
19 | 18 | 3expia | |
20 | 7 19 | syld | |
21 | 20 | con4d | |
22 | 21 | 3impia | |
23 | 22 | 3com23 | |