Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odf1.1 | |
|
odf1.2 | |
||
odf1.3 | |
||
odf1.4 | |
||
Assertion | odinf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odf1.1 | |
|
2 | odf1.2 | |
|
3 | odf1.3 | |
|
4 | odf1.4 | |
|
5 | znnen | |
|
6 | nnenom | |
|
7 | 5 6 | entr2i | |
8 | 1 2 3 4 | odf1 | |
9 | 8 | biimp3a | |
10 | f1f | |
|
11 | zex | |
|
12 | 1 | fvexi | |
13 | fex2 | |
|
14 | 11 12 13 | mp3an23 | |
15 | 9 10 14 | 3syl | |
16 | f1f1orn | |
|
17 | 9 16 | syl | |
18 | f1oen3g | |
|
19 | 15 17 18 | syl2anc | |
20 | entr | |
|
21 | 7 19 20 | sylancr | |
22 | endom | |
|
23 | domnsym | |
|
24 | 21 22 23 | 3syl | |
25 | isfinite | |
|
26 | 24 25 | sylnibr | |