Metamath Proof Explorer


Theorem odinf

Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses odf1.1 X=BaseG
odf1.2 O=odG
odf1.3 ·˙=G
odf1.4 F=xx·˙A
Assertion odinf GGrpAXOA=0¬ranFFin

Proof

Step Hyp Ref Expression
1 odf1.1 X=BaseG
2 odf1.2 O=odG
3 odf1.3 ·˙=G
4 odf1.4 F=xx·˙A
5 znnen
6 nnenom ω
7 5 6 entr2i ω
8 1 2 3 4 odf1 GGrpAXOA=0F:1-1X
9 8 biimp3a GGrpAXOA=0F:1-1X
10 f1f F:1-1XF:X
11 zex V
12 1 fvexi XV
13 fex2 F:XVXVFV
14 11 12 13 mp3an23 F:XFV
15 9 10 14 3syl GGrpAXOA=0FV
16 f1f1orn F:1-1XF:1-1 ontoranF
17 9 16 syl GGrpAXOA=0F:1-1 ontoranF
18 f1oen3g FVF:1-1 ontoranFranF
19 15 17 18 syl2anc GGrpAXOA=0ranF
20 entr ωranFωranF
21 7 19 20 sylancr GGrpAXOA=0ωranF
22 endom ωranFωranF
23 domnsym ωranF¬ranFω
24 21 22 23 3syl GGrpAXOA=0¬ranFω
25 isfinite ranFFinranFω
26 24 25 sylnibr GGrpAXOA=0¬ranFFin