| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odf1.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
odf1.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
odf1.3 |
⊢ · = ( .g ‘ 𝐺 ) |
| 4 |
|
odf1.4 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) |
| 5 |
|
znnen |
⊢ ℤ ≈ ℕ |
| 6 |
|
nnenom |
⊢ ℕ ≈ ω |
| 7 |
5 6
|
entr2i |
⊢ ω ≈ ℤ |
| 8 |
1 2 3 4
|
odf1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ↔ 𝐹 : ℤ –1-1→ 𝑋 ) ) |
| 9 |
8
|
biimp3a |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 : ℤ –1-1→ 𝑋 ) |
| 10 |
|
f1f |
⊢ ( 𝐹 : ℤ –1-1→ 𝑋 → 𝐹 : ℤ ⟶ 𝑋 ) |
| 11 |
|
zex |
⊢ ℤ ∈ V |
| 12 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
| 13 |
|
fex2 |
⊢ ( ( 𝐹 : ℤ ⟶ 𝑋 ∧ ℤ ∈ V ∧ 𝑋 ∈ V ) → 𝐹 ∈ V ) |
| 14 |
11 12 13
|
mp3an23 |
⊢ ( 𝐹 : ℤ ⟶ 𝑋 → 𝐹 ∈ V ) |
| 15 |
9 10 14
|
3syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 ∈ V ) |
| 16 |
|
f1f1orn |
⊢ ( 𝐹 : ℤ –1-1→ 𝑋 → 𝐹 : ℤ –1-1-onto→ ran 𝐹 ) |
| 17 |
9 16
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 : ℤ –1-1-onto→ ran 𝐹 ) |
| 18 |
|
f1oen3g |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : ℤ –1-1-onto→ ran 𝐹 ) → ℤ ≈ ran 𝐹 ) |
| 19 |
15 17 18
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ℤ ≈ ran 𝐹 ) |
| 20 |
|
entr |
⊢ ( ( ω ≈ ℤ ∧ ℤ ≈ ran 𝐹 ) → ω ≈ ran 𝐹 ) |
| 21 |
7 19 20
|
sylancr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ω ≈ ran 𝐹 ) |
| 22 |
|
endom |
⊢ ( ω ≈ ran 𝐹 → ω ≼ ran 𝐹 ) |
| 23 |
|
domnsym |
⊢ ( ω ≼ ran 𝐹 → ¬ ran 𝐹 ≺ ω ) |
| 24 |
21 22 23
|
3syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ran 𝐹 ≺ ω ) |
| 25 |
|
isfinite |
⊢ ( ran 𝐹 ∈ Fin ↔ ran 𝐹 ≺ ω ) |
| 26 |
24 25
|
sylnibr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ran 𝐹 ∈ Fin ) |