| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infpssrlem.a |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 2 |
|
infpssrlem.c |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
| 3 |
|
infpssrlem.d |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 4 |
|
infpssrlem.e |
⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) |
| 5 |
|
frsuc |
⊢ ( 𝑀 ∈ ω → ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ suc 𝑀 ) = ( ◡ 𝐹 ‘ ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 ) ) ) |
| 6 |
4
|
fveq1i |
⊢ ( 𝐺 ‘ suc 𝑀 ) = ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ suc 𝑀 ) |
| 7 |
4
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑀 ) = ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 ) |
| 8 |
7
|
fveq2i |
⊢ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑀 ) ) = ( ◡ 𝐹 ‘ ( ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 ) ) |
| 9 |
5 6 8
|
3eqtr4g |
⊢ ( 𝑀 ∈ ω → ( 𝐺 ‘ suc 𝑀 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑀 ) ) ) |