| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djurf1o |
⊢ inr : V –1-1-onto→ ( { 1o } × V ) |
| 2 |
|
f1ofun |
⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → Fun inr ) |
| 3 |
|
ffvresb |
⊢ ( Fun inr → ( ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴 ⊔ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ dom inr ∧ ( inr ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) ) |
| 4 |
1 2 3
|
mp2b |
⊢ ( ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴 ⊔ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ dom inr ∧ ( inr ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 5 |
|
elex |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ V ) |
| 6 |
|
opex |
⊢ 〈 1o , 𝑥 〉 ∈ V |
| 7 |
|
df-inr |
⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) |
| 8 |
6 7
|
dmmpti |
⊢ dom inr = V |
| 9 |
5 8
|
eleqtrrdi |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ dom inr ) |
| 10 |
|
djurcl |
⊢ ( 𝑥 ∈ 𝐵 → ( inr ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| 11 |
9 10
|
jca |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ dom inr ∧ ( inr ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 12 |
4 11
|
mprgbir |
⊢ ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴 ⊔ 𝐵 ) |