Metamath Proof Explorer


Theorem intnan

Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993)

Ref Expression
Hypothesis intnan.1 ¬ 𝜑
Assertion intnan ¬ ( 𝜓𝜑 )

Proof

Step Hyp Ref Expression
1 intnan.1 ¬ 𝜑
2 simpr ( ( 𝜓𝜑 ) → 𝜑 )
3 1 2 mto ¬ ( 𝜓𝜑 )