| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulrcn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑅 ) | 
						
							| 2 |  | invrcn.i | ⊢ 𝐼  =  ( invr ‘ 𝑅 ) | 
						
							| 3 |  | invrcn.u | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 5 | 4 3 | tdrgunit | ⊢ ( 𝑅  ∈  TopDRing  →  ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  ∈  TopGrp ) | 
						
							| 6 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  =  ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) | 
						
							| 7 | 4 1 | mgptopn | ⊢ 𝐽  =  ( TopOpen ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 8 | 6 7 | resstopn | ⊢ ( 𝐽  ↾t  𝑈 )  =  ( TopOpen ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 9 | 3 6 2 | invrfval | ⊢ 𝐼  =  ( invg ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 10 | 8 9 | tgpinv | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  ∈  TopGrp  →  𝐼  ∈  ( ( 𝐽  ↾t  𝑈 )  Cn  ( 𝐽  ↾t  𝑈 ) ) ) | 
						
							| 11 | 5 10 | syl | ⊢ ( 𝑅  ∈  TopDRing  →  𝐼  ∈  ( ( 𝐽  ↾t  𝑈 )  Cn  ( 𝐽  ↾t  𝑈 ) ) ) |