| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulrcn.j |  |-  J = ( TopOpen ` R ) | 
						
							| 2 |  | invrcn.i |  |-  I = ( invr ` R ) | 
						
							| 3 |  | invrcn.u |  |-  U = ( Unit ` R ) | 
						
							| 4 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 5 | 4 3 | tdrgunit |  |-  ( R e. TopDRing -> ( ( mulGrp ` R ) |`s U ) e. TopGrp ) | 
						
							| 6 |  | eqid |  |-  ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) | 
						
							| 7 | 4 1 | mgptopn |  |-  J = ( TopOpen ` ( mulGrp ` R ) ) | 
						
							| 8 | 6 7 | resstopn |  |-  ( J |`t U ) = ( TopOpen ` ( ( mulGrp ` R ) |`s U ) ) | 
						
							| 9 | 3 6 2 | invrfval |  |-  I = ( invg ` ( ( mulGrp ` R ) |`s U ) ) | 
						
							| 10 | 8 9 | tgpinv |  |-  ( ( ( mulGrp ` R ) |`s U ) e. TopGrp -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) ) | 
						
							| 11 | 5 10 | syl |  |-  ( R e. TopDRing -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) ) |