| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulrcn.j |  |-  J = ( TopOpen ` R ) | 
						
							| 2 |  | invrcn.i |  |-  I = ( invr ` R ) | 
						
							| 3 |  | invrcn.u |  |-  U = ( Unit ` R ) | 
						
							| 4 |  | tdrgtps |  |-  ( R e. TopDRing -> R e. TopSp ) | 
						
							| 5 | 1 | tpstop |  |-  ( R e. TopSp -> J e. Top ) | 
						
							| 6 |  | cnrest2r |  |-  ( J e. Top -> ( ( J |`t U ) Cn ( J |`t U ) ) C_ ( ( J |`t U ) Cn J ) ) | 
						
							| 7 | 4 5 6 | 3syl |  |-  ( R e. TopDRing -> ( ( J |`t U ) Cn ( J |`t U ) ) C_ ( ( J |`t U ) Cn J ) ) | 
						
							| 8 | 1 2 3 | invrcn2 |  |-  ( R e. TopDRing -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) ) | 
						
							| 9 | 7 8 | sseldd |  |-  ( R e. TopDRing -> I e. ( ( J |`t U ) Cn J ) ) |