Metamath Proof Explorer


Theorem ioossico

Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017)

Ref Expression
Assertion ioossico ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 )

Proof

Step Hyp Ref Expression
1 df-ioo (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑥 ∈ ℝ* ∣ ( 𝑎 < 𝑥𝑥 < 𝑏 ) } )
2 df-ico [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑥 ∈ ℝ* ∣ ( 𝑎𝑥𝑥 < 𝑏 ) } )
3 xrltle ( ( 𝐴 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤𝐴𝑤 ) )
4 idd ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵𝑤 < 𝐵 ) )
5 1 2 3 4 ixxssixx ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 )