Metamath Proof Explorer


Theorem ioossico

Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017)

Ref Expression
Assertion ioossico ABAB

Proof

Step Hyp Ref Expression
1 df-ioo .=a*,b*x*|a<xx<b
2 df-ico .=a*,b*x*|axx<b
3 xrltle A*w*A<wAw
4 idd w*B*w<Bw<B
5 1 2 3 4 ixxssixx ABAB