Metamath Proof Explorer


Theorem ioossico

Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017)

Ref Expression
Assertion ioossico A B A B

Proof

Step Hyp Ref Expression
1 df-ioo . = a * , b * x * | a < x x < b
2 df-ico . = a * , b * x * | a x x < b
3 xrltle A * w * A < w A w
4 idd w * B * w < B w < B
5 1 2 3 4 ixxssixx A B A B